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INTRODUCTION

This booklet is not intended to tell you all there is to know about
measurement in physics—this would be an impossible task. It is
intended to make you think about methods for taking measure-
ments and to devise ways of your own of doing this instead of
relying upon instructions. It should also lead you to conclude that,
although there are acceptable facts in physics, there are no really
absolute facts. For this reason the book does not consist of a
series of “facts” to be read and learnt.

Many questions are asked throughout the text. The answers may
be foungd by using commonsense, a dictionary, an encyclopaedia,
or a suitable physics reference book.

Many of the experiments suggested can be done without the use
of expensive equipment—try them. Devise your own experiment
where possible, but always keep in mind the conditions under which
valid, reliable measurements may be made during the experiment,

When you have completed the text you should have gained a
little “factual™ knowledge, but more important, you should have
also gained a fresh, active approach to the methods and reasons
for measurement in physics.

Professor Richard Feynman, Professor of Theoretical Physics at
the Californian Institute of Technology. recently said: “It is not
science to know how to change Centigrade to Fahrenheit. It's
necessary, but it is not exactly science ... Science is the belief
in the ignorance of the experts™.

In order that you may question the experts, you must have a
spirit of enquiry—an inner drive to know. If you have this quality
you will appreciate its value.

Fig 0.7

Question: how long was the exposure?
Note: a protractor is a transducer (360" = 24
hours). and page 5 and Chapter 4 will tell
you what a transducer is.

What is the instrument in the foreground ?




1: MEASUREMENT —Why is it important?

You have all probably made thousands of measurements in your
lives, but have you ever stopped to consider what it involves?
What do you actually do when you make a measurement?

Whether it is the length of a piece of wood, the mass of an
object or the period of time between two events, you are actually
making a comparison against some familiar standard.

The earliest and simplest standards were probably the personal
ones—handspans and paces for length, pulse beats for time and
so on. However, at a very early stage in the history of civilisation,
the first objective standard weights and measures were introduced.
The comparison then became indirect. Instead of comparing

directly with the standard, comparison was made with a copy of

the standard, more or less accurate. Inspectors of weights and
measures were among the first public servants.

Today, many measurements are made even more indirectly via
some form of transducer—a device to convert one quantity into
another which is more readily mecasurable, as a thermometer
converls temperature into length.

All measurements can be reduced to comparison with some
standard.

To test this idea, try the following. If you wear ear plugs and a
blind fold, what measurements can you make? Do this as a
“thought™ experiment. You should be able to think of some.

Before discussing some of these ideas in detail perhaps we should
consider why it is important:

(a) to make measurements, and

(b) to know how reliable these experiments are

If one looks at a graph of scientific knowledge plotted against
time, it looks something like Fig 1.1.

The point at which the bulk of scientific “fact™ started to rise
steeply coincides very well with the introduction of experimental
(as opposed to philosophical) methods and to the use of measuring
instruments and accepted standards.

Behavioural sciences in which no direct measurement and
comparison with agreed standards is possible, have progressed
very slowly. It would also seem that the advancement of a particu-
lar science depends on the sophistication of its associated measuring
devices. We cannot always rely on our own senses to make measure-
ments. Firstly, we can be mistaken-—optical illusions are only a
dramatic illustration of the shortcomings of our eyesight. Secondly,
the range of our senses is restricted—we can, for example, only
‘see’ a limited part of the electromagnetic spectrum, and have to
use transducers for the rest.

How well do you think you could estimate the length of a self-
luminous white rod in a completely darkened room, if you did not
know how far away the rod was, i.e. if you had no familiar object
or background to refer to?

bulk of
knowledge

time

Fig 1.1

present

Fig 1.2 Are any of these lines curved?

Now do Experiment S7/1, page 59
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We need measuring instruments and preferably reliable, valid
instruments if we are to progress in Physics.

These days, closely allied with scientific advance there is a
growing public feeling that science breeds some ““ugly” products—
nerve gas, bacterial warfare, nuclear bombs, pollution of various
sorts. This seems to indicate that a scientist has a moral obligation
to the community to see that his work aids his society and does not
seek to ultimately destroy it. Perhaps there should be a scale of
moral qualifications as well as academic qualifications, required for
positions in which scientists are likely to become involved in
research leading to potentially destructive products. If so, how do
you measuré moral quality? What is your standard ? What do you
use to make your comparison ? How reliable is your measurement ?
(And indeed what units will you use?)

Perhaps your difficulty in answering the above questions will
indicate why sciences relating to human behaviour have progressed,
perhaps unfortunately, more slowly than the physical, chemical
and biological sciences.

So then we can say that for the rapid progress of science. measure-
ment is essential and standards of measurements that are known
and acceptable to all who are likely to measure any particular
quantity are also essential.

What chaos would result if each State in Australia decided to
adopt different standard units of length? It is bad enough with
metric and British units existing side by side. How much worse if
there was a proliferation of standards. Fortunately, the trend is
the other way. Metric weights and measures are rapidly ousting
all others. For scientific purposes, we need even more precise
standards for any quantity that is to be subject to measurement.
‘We shall consider just exactly what these standards should be at a
later point.

Now it is perhaps important to consider the second point raised
earlier. It is all very well to have a standard that is used by all, but
when we make a measurement of a quantity by comparing it with
this standard, how accurately can it be done, and is it important
to know how accurate our measurement is ?

The taking of any measurement involves three things—an
observer, an instrument, and an object or quantity to measure. We
will discuss these in more detail later, but perhaps we can briefly
mention the effect of each here.

The observer is limited by the scope of his senses, e.g. events
that occur in time intervals of less than one-twentieth of a second
lose their individuality and merge into one another because of
retention of vision of the eye. He is also limited by his skill in using
a measuring instrument— a sensitive balance in the hands of an
inexperienced user is hardly likely to result in an accurate measure-
ment of a mass.




The instrument selected for a particular measurement should
have a range suitable for the job and all instruments used in
measuring some derived quantity should yield results with the
same degree of accuracy. We shall assume that the observer is
sensible enough to check the instrument for zero error, faulty
functioning, etc.

The quantity being measured or estimated also limits the
accuracy of the result. Imagine trying to measure the size of an
amoeba (what is an amoeba ?) underneath a microscope provided
with a scale in the field of vision. How accurate would your result
be? It should not be difficult to see that a poor observer, faulty
instrument and ill-defined quantity can achieve a result that is of
very doubtful validity.

Let us try another “thought” experiment. Suppose you were
given a school ruler that looked much the same as any other, but
was in fact only 11.9 inches long, divided up into 12 divisions with
the normal inch markings on it.

Would you be able to tell immediately that it was not 12 inches
(12 standard inches, that is) long? How?

Right—now suppose that everybody in the class had such a
ruler and no other measuring instrument, could you tell if anything
was unusual about the ruler? I doubt it!

If you were unaware that the ruler was non-standard all of your
measurements would have one source of error right from the start
(regardless of any others you might encounter).

If you were aware of the error, you could make allowance for it
without too much trouble.

How many times have you looked at a clock, a speedometer, a
meter of any sort and taken the reading given as exact. In fact,
what does exact mean anyway ? Many things apart from the faulty
meter can influence the accuracy of the device you are observing—
the zero (is it zero?), the thickness of the needle and the gradua-
tions, parallax (a rather complex word—what does it mean?), the
conditions at the time of measurement.

You should always question the reliability and accuracy of any
measuring device that you use. If it is inaccurate (and they all are
to some degree), find out the degree of inaccuracy and, if it is
acceptable, allow for it—if not, find a more suitable measuring
instrument.

We have considered why we should measure and why we should
know the accuracy of the measuring instrument. Now we should
discuss exactly what we are likely to want to measure and what
units we want to use to do this.

1: MEASUREMENT / 7

Fig 1.3 An ancient form of clock.
Is it {a) accurate?
(b) consistent?
(c) reliable?
(d) convenient?
What are its good points?



2: MEASURABLE QUANTITIES

The fundamental quantities that we may wish to measure are those
of length, mass, time and electrical current.

1. The British or F.P.S. system of units was once used widely in
all measurements. Nowadays, F.P.S. units are rarely used in
scientific work and are gradually being replaced in everyday use.
The initials stand for the fundamental units of length, mass and
time—jfoot, pound and second.

If you refer to a good dictionary for a definition of the “foot™,
you will find that it was initially taken as the length of an adult
man’s foot. Measure your left and right feet. Are they the same
length? Are ejther of them 12" long or one (standard) *foot”
long? Make a survey of the length of feet in your class. Find the
average length and the maximum deviation either way. Is the
average foot length equal to one “foot™? Can you suggest a reason
for any discrepancy?

Make a survey of all the British Units of length that you can find.
Probe into history a little and see how they were originally defined.
Comment on the validity of these definitions and discuss why most
of the units are no longer in common use.

2. The second system of units widely used today is a metric (or
power-of-ten type) system—the C.G.S. system. The initials again
stand for the units—centimetre, gram and second.

3. Thirdly, there is the metric M.K.S.A. system of units, the
initials standing for metre, kilogram. second and ampere, now
widely used in scientific work and gaining in popularity in
common use. Most international athletic events use the metre,
as does much international trade and commerce. We will therefore
examine the M.K.S.A. system in greater detail.

1. LENGTH

The metre came into being during the days of the French Revolu-
tion, and was originally designed to be one ten-millionth the distance
from pole to equator as ascertained by the actual measurement of
an arc of the meridian. This was calculated, and *‘standard™
lengths one metre long were soon in common use. It was then
discovered that the measurement of the pole-equator distance was
incorrect. Nonetheless, the length that had previously been accep-
ted as the metre was retained. :

The metre is now defined in terms of the wavelength of the
element krypton. The metre is the length equal to 1 650 763.73
wavelengths in vacuum of the radiation corresponding to the
transition between the levels 2p,, and 5ds of the krypton-86 atom.
Why is this a more satisfactory standard than the earlier one?

Learn the prefixes that are used in the M.K.S.A. system to
represent larger and smaller lengths, e.g. one kilometre is 1000
metres, one millimetre is one-thousandth of a metre. (See p. 49)

8
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Fig 2.1 An aerial photograph of Adelaide. Work out
a suitable scale using known objects (ovals,
etc.) as reference objects. You could also
do this by consulling a street directory for
lengths of streets. What is the use of such a
photo? What information does it give you?

The radiophysics division of Australia’s
Commonwealth Scientific and Industrial
Research Organisation has produced this
radio telescope designed specifically to
pinpoint and photograph small areas of the
sun. It is able to focus on less than one per
cent of the sun, and show 10000 times
more detail than a first-class radar set. The
telescope was invented by Dr. Wilbur
Christiansen, of the radiophysics division of
C.5.L.R.0. Sydney. and was set up in a site
about 30 miles from Sydney.

What area would 1% of the visible face of the
sun encompass? What difficulties would one
be likely to encounter in lrying to focus like
this to obtain fine detail?

9
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2. MASS

The fundamental M.K.S.A. unit of mass is the kilogram, and this
is the mass of a standard lump of material kept in the International
Bureau of Weights and Measures in France. All other one kilo-
gram masses should be exact copies of this. Do you think they are?
(Be careful before answering this to consider what we mean by
exact; is it possible to have an “exact” copy of anything?) Examine
a laboratory standard one kilogram mass. Get some idea of how
much brass, wood, water, etc., constitutes one kilogram,

Having established the unit we are going (o use to measure mass
it may now seem sensible to ask ourselves “Just what is ‘mass’?
What are we really measuring?”

Well, most of you could quickly reply that mass is the amount
of matter in a body and this might seem to be a perfectly adequate
answer—adequate that is, until someone asks you what ‘matter’ is!

Our idea of mass is confused by the fact that it seems to play a
dual role. We are aware of our own mass because of the gravi-
tational effect the mass of the earth has on it. We know this effect
exists and we rely upon it every day in many ways. Think of how
difficult it would be to walk if our muscles had to lift our legs for
each step and also make them move downwards.

This property that objects have that we call mass somehow
causes an attractive force between two or more objects (always
attractive as far as we know). This force is quite weak compared to
the other forces in nature, but it acts over large distances. It is the
‘glue’ that holds the solar system and the Universe together. The
attractive force between two masses is readily observable, but why
it should exist, and how the force is transferred (how does one
mass ‘know’ of the existence of the other?)—these questions are
not so easy to answer. If you are interested in following up this
question, see what you can find out about the word gravitation.

We can compare masses then by comparing the effect that the
earth’s gravitational field has upon each. This works so long as
mass is directly proportional to the weight, which appears to be
the case.

Mass also seems to play another role—it determines how hard
it is to change the state of motion of a body. Imagine that you run
flat out at a cube of polystyrene foam of side six feet in an effort
to shift it. Now imagine the same act when the foam is replaced
by an equal volume of concrete (solid, well-set, reinforced concrete).
The concrete would resist your trying to change its state of motion
rather more than the equal volume, but less massive block of foam.

Mass then can also be a measure of a body’s sluggishness or
inertia — that property of a body to remain at rest or to continue
moving in a straight line with uniform velocity unless acted on by
an unbalanced force.

On earth you could not move 216 cubic feet of concrete con-
centrated in one solid block, but imagine that you were in orbit

KILOGRAM

Fig 2.3(a) What does this photo illustrate ?
What energy changes have taken place?
What energy changes are about to take
place ?

(b) Discuss the incident in this photo
(1) in physical terms
(2) in terms of road safety
Look at the rear seat passenger in the
front car—why is he in the paosition
shown ? .




around the earth and so was the block. In such a situation you
would find that you could move the block if you applied a small

constant force (this could prove difficult—think why), but you
would have to be satisfied with moving it slowly—initially at least,

Having succeeded in moving the block relative to yourself, with
difficulty, you would find it equally difficult to cancel out the
motion of the block by pushing on it in the opposite direction. You
could bring the block to rest, but you would have to be prepared
to do it slowly.

When we measure mass then, we are measuring that property of
a body that determines the interaction of it with another mass, i.c.
its “weight-like” property (called the gravitational mass), or its
inertial property (inertial mass). We have not really said what
mass is, we have merely discussed the behaviour of a body which
has this property we call mass.

Albert Einstein put forward a now famous equation relating
mass and energy.

E (energy) = m (mass) x ¢? (velocity of light, squared)

So mass and inertia, mass and ‘weight’, mass and energy are all
related, and when we compare masses by some form of measure-
ment we could equally well be comparing energies.

Balances — Weighing errors

Gravitational mass may be measured on a standard beam balance,
triple arm balance, electronic balance, etc.

We normally refer to this process as weighing and there are
several sources of error in the process. Some of these can be attri-
buted to the particular balance, but some depend on the interaction
of the mass being ‘weighed’ with its surroundings. For example:

(1) The substance may absorb water vapour or impurities from
the air, or alternatively it may dry out.

(2) There may be apparent changes in weight because of buoyancy
effects (the upthrust of the air), electrostatic forces, etc.

As the mass determination becomes more precise, then more
attention must be paid to these sources of error.

3. TIME

The fundamental M.K.S.A. unit of time is the second. Many ways
have been devised to define an interval of one second. It has been
defined as a certain fraction of the year 1900 (is one second now
the same interval of time as a second was in the year 1900 or in
the year 20008.c. for that matter? Could you devise some mcans
of checking your answer?)

Calculate the order of magnitude (the power of ten) of one
year in seconds.

The second is now defined using the atom caesium. Caesium
atoms absorb and emit radiation whose frequency is 9 192 631 770
vibrations per second. These atoms form the basis of the atomic
clocks used as time standards throughout the world.

MEASURABLE QUANTITIES / 11

Now do Experiment S7/2. page 60
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Looking at the figures quoted above, you might think that this
is a remarkably accurate time standard, but think a while. The
phrase vibrations per second is used—which second is this? The
caesium clock has been compared with some previously defined
standard. Neither of these are really natural units of time: they are
arbitrary man-made units of time.

As with mass, having defined our unit of time we should ask
ourselves “What is this stuff we measure in seconds?” Some
students answers to the question “What is time?" are shown
below:—

(1) *“Time is infinite, or is infinity”.

(2) “Something verbally indefinable, but which has a very great
effect on our lives”.

(3) “*A sequence of events™.

(4) “Time is due to the motion of our planet, Earth, around the
sun, i.e. day and night™.

(5) “The measure of a happening in relation to anything”.
(6) “A fourth dimension”".
(7) “Something I haven’t got enough of ™,

Albert Einstein, when asked the above question replied, “Time is
what you measure with a clock” and this is as good a definition
as any. Time, like any other concept in nature, is really dependent
on the laws in which it is employed. All that we ask of our time
measuring instruments is that they be consistent.

Of the definitions of time given above, (3) is perhaps worthy of
further mention. We unconsciously measure time by placing events
in a specific order. Changing events are described by the passage
of time (or is the passage of time described by the changing events?)

You may like to ponder the following questions:—

Does time have an absolute zero? i.e. a beginning? (and hence
perhaps an end, according to the prophets of doom). If so to what
can you relate either end of this then established time scale?

Can man interfere with the passage of time? (i.e. make it go
faster or slower?)—this will be discussed later in a little more
detail,

Is it possible to go back in time ? Suggest reasons.

Try looking through reference books in the library and make a
summary of the different types of clocks that man has devised to
help him “tell the time”. Try to compare them. See how the relative
merits of each (and their limitations) are related to the prevailing
conditions of the historical ‘time’ in which they were used.

In some of the realms of science, it has not always been possible
to perform the measurements required to test a scientific theory at
the time the theory was put forward. Today it is possible to simulate
the conditions required for an experiment using a modern electronic
computer. The experiment itself need not be done in some cases,

Fig 2.4 Twin clocks in the Mullard Radio Astronomy
Observatory, Cambridge, show G.M.T. and
Sidereal Time.




the simulated experiment suffices. We do not propose to try to
construct such a simulation at this stage, but as a first step towards
this process (which you will almost certainly be involved in if you
pursue a scientific career), we shall present an example (Exercise
$7/3) of how a computer can replace pencil and paper to perform
a calculation and to predict what measurements we might be
required to make in an actual experiment. This is a valid procedure
and although in the simple case we have chosen it may not seem
important, in more complex cases the results of the computer
calculations do indicate the order of magnitudes of the results of
an experiment, and hence the measuring technique required.

4. ELECTRIC CURRENT

The unit of electric current in the M.K.S.A. system is the ampere.
This is defined in terms of the force it produces between two
parallel conductors. The definition will be given in the core material
you study. Try to discover how the unit was previously defined.
What do you think is the maximum electric current that may flow
through the wiring of your house without causing damage? (A
look at the fuse box will quickly supply you with an estimate.)

THE VERY LARGE AND THE VERY SMALL

We have discussed the units that we are going to use in our measure-
ment of the fundamental quantities of Length, Mass, Time and
Electric Current. We have even tried to discuss just what these
fundamental quantities represent.

Normally we are quite familiar with measurements of quantities
that we can relate to ourselves, to our own height, size, mass and
lifetime. We find little difficulty in closing our eyes and visualising
familiar quantities, but it is difficult to visualise a mass of 10°°kg, a
time of 10~ 17 seconds, a mass of 10™3! kg, a time of 10™2# seconds,
a distance of 10715 metres, a distance of 10'° light years.

We cannot really comprehend the magnitude of these quantities
and yet . . .

1035 kg is the estimated mass of the Universe.

"9 x 107*! kg is the mass of an electron at rest.
10*7 seconds is the estimated lifetime of the Universe.
107" metres is the diameter of an atom.

10~ 2% seconds is the shortest time interval studied, although
direct methods of doing this are unknown.

10'° light years is the extent of the known part of the Universe.

A further comparison of large and small follows in the table.

2: MEASURABLE QUANTITIES /13

Now do Experiment §7/3, page 61

CURRENT A AMPERE

Fig 2.5 This microphotograph of a tungsten wire of
nominal diameter Sum was taken against a
grid with 2600 lines/centimetre. What is
the degree of magnification? What was the
actual diameter of the wire?



Fig 2.6 A Field lon Emission Microscope picture of
the point of a tungsten needle. Magnification
is about 2 million times. Each spot of light
represents an atom. What does this tell us
about the structure of the material of which
the needle is composed?

PHYSICAL COMMON UNIT IN THE SCALE IN THE
QUANTITY LARGE-SCALE WORLD SUBMICROSCOPIC WORLD
Length Metre—length of a normal adult pace; average adult 1 Angstrom = 10 ~19m—— size of an atom
height is about 2 m
Time Second—the swing of a pendulum; time for a Most particles ‘live’ for about 10-23s
pulse beat
Mass Kilogram—about two pounds. Your head has a Mass of an electron = 9x10-31 kg
mass of about 5 kg
Energy Joule—energy required to pick up a pen from the 1 eV (electron volt)—now superseded;
floor 1.6x10-19J. Air molecule has 0.04eV
accelerated proton up to 3 x 1010 eV
=4.8x10-9]
Speed Metre per second; normal walking pace Speed of light = 3x108ms -1
Charge Coulomb (now more correctly ampere second) the Charge on the electron
total charge of the particles in a full stop = 1.6x10-19C
=16x10"19As
Spin kg m2 s ~1—a man turning around slowly Spin of photon = 10-34kgm2s-1

Fig 2.7 The spiral nebula (left) is ten thousand times
further away than the globular cluster in our
own galaxy (right).



3: UNCERTAINTY IN MEASUREMENT

In making any measurement we must accept the fact that we must
allow for some variation in the measured quantity. This variation
may result from the person making the measurement, from the
limitations of the measuring instrument, or from the limitations
of the quantity being measured. If we consider this last source of
variation, perhaps this can be made clearer in the following manner.
Consider the page you are reading at the moment—how long is it?

You might try to measure the length with a ruler and if you did
then you could give an answer to the nearest millimetre. If you used
a travelling microscope to sight the edges of the paper, then your
measuring instrument would be more precise, but another difficulty
would arise—where exactly is the edge of the paper? The edge
that looks so definite when viewed with the naked eye appears
quite fuzzy and indistinct under the microscope. To take a more
obvious example, what is the diameter of a 50c coin, or one with
a milled edge, for that matter? A tennis ball? Try to make some
measurements from fig 3.1. The scale is given. Discuss your
difficulties.

To measure the thickness of a sheet of paper you might use a
micrometer and a single sheet and take several measurements to
obtain an average.

EXPERIMENT

Take a single page of this booklet. Use a micrometer to measure
its thickness. How reliable is this measurement? What factors
contribute to its unreliability ?

MNow take 20 pages of the same booklet and measure the
thickness of the 20 pages. Divide by 20 to get the thickness of
one page. Compare this with your first value. Which is more
reliable? Why ?

Can you suggest how to measure the thickness of a sheet of
paper given a rule with only two marks on it, one metre apart
(and enough paper). How do you think this would compare with
your first method? The thickness may also be found by using
an indirect optical method, and this will be discussed later.

The measuring instrument itself limits the degree of accuracy
of any measurement. If the instrument is faulty in any way then the
measurements may be unreliable, i.e. repeated estimates of the
same thing may vary. Alternatively, if the instrument is not faulty,

_ but simply out of adjustment, there may be a consistent, predictable
error. If you are aware of it you can make allowance for it,

The person taking the measurements is a little less predictable.
Statistically we can allow for the variation in particular measure-
ments made by an observer if we have previously examined the
performances of a large random sample of similar observers under
similar conditions.

To illustrate this, consider the term, reaction time. This i1s the
time interval between the occurrence of a given stimulus and the

Fig 3.1 What are the diameters?

Fig 3.2 A micrometer.
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observer making a response to this stimulus. Use one of your
friends to help you test your reaction time to a visible stimulus.

EXPERIMENT

Instruct a partner to hold an ordinary school ruler vertically
between thumb and forefinger at the 12” mark. Hold your thumb
and forefinger adjacent to, but not touching the zero mark. The
idea is that the person holding the ruler should drop it without
giving you prior warning. As soon as it is dropped you must try
to stop it falling. Do this 50 times and record the distance fallen
in each case. Average the results.

We know that the acceleration a of the rule is g==10ms 1.
We also know the average distance fallen (5). We can therefore
calculate the time:

goe= 11202
t =+/2s/a

= Mo ie 0 /4 2
10 100 100 ~ 10

i.e. your reaction time is one fifth of a second.

Using a slightly more sophisticated measuring device, you can
make measurements of your reaction time to 8 or even 16 signifi-
cant figures.

A computer can perform additions or multiplications at a fixed
rate. If one writes a short programme (a set of instructions to the
computer) it is possible to start “counting” from zero and to
continue until stopped.

If the interval between each count is 10™* seconds and the
computer has counted up to 2568 when it is stopped, then the time
interval would be 2568 x 10™* seconds = 0.2568 seconds.

The “start” button lights up when pressed. Hence the person
whose reaction time is being measured waits with his finger on the
‘Instant Stop’ button. As soon as he sees the light he pushes the
button. The time taken is then printed out.

Which would be (a) more accurate ?

(b) more reliable?
One reading from the computer of 0,2568 seconds.
The average from the ruler experiment of, say, 0.25 seconds.

Can you devise other simple experiments to test your reaction
time to a visible, audible, olfactory, tactile stimulus? Before doing
this, discuss the two methods given for measurement of reaction
time in class. Can you think of any situations in which it may be
important to know a person’s reaction time?

S5TART

INSTANT
5TOP

Fig 3.3




Translated units

Note that in the experiment with the ruler we actually measured
time as a length, i.c. the ruler was a transducer. We can also work
the other way: ‘the house is five minutes from the shops’, ‘London
is 24 hours from Sydney’. (And what is a parsec, for that matter.)
So for a thought exercise: If you know all the standard physical
data (the speed of light and sound, the density of water, etc.) how
would you describe:
0.001 m, 1.0 m, 1000 m without mentioning a unit of length,
0.001 kg, 1.0 kg, 1000 kg without mentioning a unit of mass,
0.1 sec, 1.0 sec, 60 sec without mentioning a unit of time?

There is another thought exercise (needing pencil and paper as
well) in the side column.

ERRORS

In any real scientific experiment we usually start with some know-
ledge of the final result. The measurements taken simply decrease
the uncertainty in the answer, although some degree of uncertainty
must always remain regardless of the ability of the observer or the
sophistication of the measuring device. Any measuring instrument
disturbs that which it is intended to measure. Nothing can be
measured in its undisturbed state. In order that we see an object it
must reflect or emit light. Is this reflection just like tennis balls
bouncing off a wall or does the light interact with the reflecting
surface? (If the latter is true can we say that the object reflecting
the light is undisturbed ? This is further discussed in a later section.)

Try to measure the temperature of a thimble full of hot water
with an ordinary laboratory thermometer. Do you think your
result is valid? Accurate? Reliable? Think of the meters used to
make measurements in electrical work. Do they upset the system
being measured? Can we allow for this?

Having made our measurements, we must indicate the estimate
made, and the degree of uncertainty, e.g. for a length measured
with a metre ruler, with the smallest divisions being millimetres,
we might estimate a length to be 2.55cm + 0.05cm or (2.55 £
0.05) cm. This simply indicates that the measured length may be
as small as 2.50 cm or as large as 2.60 cm.

It is impossible then, to ‘measure’ anything directly. As we have
said before, measurement involves counting and comparison. We
simply compare the quantity under observation with some con-
venient, established standard quantity of the same nature.

If we examine the statement “the average length of ten fingers is
ten centimetres”, we see that the word ““ten” has been used in two
quite distinct ways. In the phrase “ten fingers”, it represents the
natural or counting number. Provided that a person has ten normal
fingers and has not suffered an amputation of any of them, then the
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THE UNITS OF CZINK

The ancient civilization of Czink was very
advanced scientifically, but for various reasons
adopted a different set of basic units from ours.
Instead of working from length, mass and time,
they worked from acceleration, momentum and
force.

Their units were the down (for acceleration)
the miove (for momentum) and the push (for
force).

Instead of measuring time in seconds, they
measured it in moves per push. We can check the
reasonableness of this dimensionally:

push is force F=ma=mlt"2

move is a momentum = myv =mlt-1
move mlt ! 1 A(time)

S0 = = — = 1me).
push mlt™2 7t

What were their units for length, mass,
velocity, kinetic energy, density, (go on as long
as you like—you will find some intriguing
relationships).
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use of “ten” in this instance implies an exact count. There are
exactly ten fingers, not 10.001 or 9.999 regardless of the measuring
technique used to arrive at this number. The second use of the
word “ten” in the phrase “ten centimeters™ is always an approxi-
mation. Here we are dealing with a defined standard unit, and to
measure the length of a finger involves comparison with that
standard.

Since it is theoretically impossible to express any length to
infinite accuracy (except the one which provided the original
standard), then the word “ten” used in the phrase “ten centi-
meters” must be an approximation.

When we know that the answer to a problem must be a whole
number, we can sometimes eliminate small errors in measurement
due to actual technique or slight variation in the objects being
measured. As an example, banks count coins by first separating
them in a sorting machine and then weighing them. To find the
total number of a particular coin, the mass of the unknown
number of coins is divided by the mass of one coin (how do you
think the latter would be obtained—simply by selecting a coin at
random and weighing it?). The bank knows that the answer must
be a whole number and they therefore approximate the answer to
their calculation down to the nearest whole number. (Why down ?)
This is one place where the “approximation’ is more accurate than
the calculated answer—at least for the bank’s purposes (a purist
may argue that a worn coin is not a whole coin, but as far as legal
tender is concerned they are worth the same.)

More often, however it works the other way. We make measure-
ments of quantities and manipulate these values by adding, sub-
tracting, multiplying and dividing them. The result cannot be more
accurate than the least accurate of the original data. The accumu-
lated error can be calculated and the following shows you how this
can be done:

With a metre rule, we can measure or estimate to one half of a
millimetre at best, hence a measurement like (52.35 + 0.05) cm
would contain four significant figures.

An error that is actually involved in the measuring process is an
absolute error. In this case the absolute error is 0.05 cm. How

would you state (2.55 + 0.05) em in the M.K.S.A. system of

units? Would this change the accuracy of the result?

Absolute errors do not always prove to be very useful in calcula-
tions involving measured quantities, e.g. if we measure the length
and breadth of an object and we wish to know the area and the
degree of uncertainty in the area, how can we do this?

Moreover, an error of 0.05 cm in 100 cm might not be considered
large, but what about an error of 0.05 cm in 0.1 cm? Obviously it
is the ratio of the absolute error to the measured quantity that is
important in assessing the degree of uncertainty. This ratio is known
as the relative error, or when expressed as a percentage, as the
percentage error. The example may clarify how this may be used to
calculate errors when measured quantities are manipulated to
give a derived quantity, e.g. two lengths giving an area.

1. Subtraction and Addition

For addition and subtraction the final absolute
error is obtained by adding the absolute errors.
If 4 = 2.00+0.01 metre

and B = 1.00-0.01 metre
then 4A—B = (1.00+0.02) metre

A-+B = (3.0040.02) metre
(If subtraction is involved note that the relative
error increases. This has important implications
in computer programming—see Appendix V.)

2. Multiplication and Division

For multiplication and division (this includes
raising to a power) the reflative errors must be
added.

¢.g. taking A and B as above

0.01 :
relative error in 4 = 500 = 1/200
: ) 0.01
relative error in B = Y 1/100

product of 4 and B = 2.00x1.00
= 2.00 metre?

relative error in this

product = _.1_+L_ e i

200 100 200

absolute error = relative error % product =
3

m % 2.00

AB = (3.00+0.03) metre?

For division, the relative errors are again
added. Calculations cannot decrease the magni-
tude of the errors made at the time of measure-
ment. The uncertainty always increases as a
result of mathematical manipulation of measured
quantities.



Significant figures

When we state the result of a measurement we write down a number
of figures, ¢.g. we might measure a length to be 5.25cm. This
implies that we have a measuring instrument that allows us to
estimate to the nearest 1072 cm—we actually measured each of
the figures stated. In this case the measurement has been made to
three significant figures, the number of significant figures being
taken as an indication of the measurements actually made. If the
least accurate of the data supplied for a calculation had say, 2
significant figures then the calculated value should not be stated to
any more than two significant figures. If data were supplied in the
form 5.6m, 8.9 m, 4.3255m, this would indicate that needless
precision had been involved in the third value. To test this assume
that the values were the sides of a rectangular box. Calculate the
volume to 2 significant figures using the data

1) 5.6 m, 8.9 m, 4.3255 m

2) 5.6m,89m,43m

Approximations

Before commencing an involved calculation, it is customary and
sensible to make an estimation of the result. If you intend to use
a slide rule then it is essential that you are aware of the order of
magnitude of the result. (Very often this is all that is required in
many calculations that are done to set up an experiment.)

. 59.52 x 32.05
e.g. if you had the problem — e
60 x 30

you could say that this was approximately 5
120

rl5

Now use logarithms and carry out the calculation.
What is the percentage difference between your calculation and
the approximate answer of 157

Computer error programme

Once you understand how errors in measured quantities can lead
to greater errors in derived quantities, and you are aware of how
the uncertainty in the derived quantity may be calculated knowing
the uncertainty in the measured quantities, there is little point in
performing such calculations endlessly. Suppose you had to
calculate the error in the surface area and volume of a number of
rectangular blocks after you had measured their dimensions.

It is a relatively simple matter to write a computer programme to
do this. Computers and measurement calculations are firmly
wedded in modern day physics. It is difficult to say how physics
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EXAMPLES

Quantity A = (10.0--0.1) metre and quantity

B

= (25.0-4:0.2) metre. Find the absolute, rel-

ative and percentage errors in:—

(a) Quantity (A4 B) =

(b

(a) A+B
(b) B—A
(c) AB
(d) 4/B
(e) A%

10.0+4-25.0 = 35.0 metre
sum of absolute errors
in A and B
=0.1-+0.2
= 0.3 metre
S A+ B = (35.0+0.3) metre
relative error in (4A—+B)

__ Absolute error in (4+ B)

absolute error =

(A+ B)
_03
— 35
3 1

= 35 ~ 120 (approx.)

percentage error = relative error x 100
100 5
ST~

) Quantity (B—A) = 25.0—10.0 = 15.0 metre
absolute error = sum of absolute errors
in 4 and B
= 0‘] *‘02
= 0.3 metre

;o B—A4 = (15.0+0.3) metre
relative error in (B—A)
Absolute error in (B— A4)

(B—A4)

percentage error = R.E. x 100

(continued on page 20)
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could progress if computers were not available to do the tedious
calculations often required. The programme given below is in the
FORTRAN language. You could write a programme to calculate
surface area and volume uncertainties for any shaped body, but
we will illustrate the method with a simple programme used for
rectangular bodies. (Format statements should continue on the
same line.)

()

(d)

(e)

(continued from page 19)

Quantity AB = 10.0x25.0
= 250 metre2
relative error =sumof R.E.'sin 4 and B

1 2
= 100 7250
SNt
500 500

1
=3 (approx.)

absolute error = quantity x R.E.
1 2
= 250 X35 = 5 metre

percentage error = R.E. x 100
=2%

AB should then be stated as (250-- 5) metre2
Quantity 4/B =% =04
‘¥ (note—no units)
relative error =sumof R.E.’sin 4 and B
1
= 50
percentage error = R.E. x 100
absolute error = 0.4x 30
= 0.008

A|B should then be stated as (0.4--0.008)

Quantity 44 = 10.04 = 10 000 metre4
(or A4 = 10.0x10.0x10.0 x 10.0)
relative error in 44 = R.E. in A+R.E. in
A+R.E. in A+R.E.
inA
=4 (R.E.in A)
e meped
100 25
1
= 2—5-)( 100

=4%
absolute error = A x 10 000
25
= 400 metre4
A4 should then be stated as (10 000--400)
metre4

=4x

percentage error




You may like to vary the programme, refine it, make it more
efficient or more elaborate. If you had, say, 1000 of these calcula-
tions to do, it would take you many hours of tedious (and probably
only partially correct) calculation. An hour or so writing a pro-
gramme is the other alternative (providing your programme
“runs”, i.e. is accepted by the computer and yields sensible results)
—the calculations are then done in a matter of seconds. We leave
it to you to decide which is the better method.

Consider the following problem:—

Imagine you were given a piece of material of the shape illustrated,
such that [ is approximately Scm, R ~ | cm,r = 0.8 cm,m = 50 g.
(Tt would be better to use M.K.S.A. Units, but we will work this
through in C.G.S. Units.) How would you proceed to determine
the density of the substance?

Suppose we used a vernier to measure /. R and r such that

|

[ = (5.00+0.01) cm relative error =
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EXPERIMENT

Take at least ten sheets of quarto (or foolscap)
paper. Estimate a length of 0.1 metre (10 cm)
and place two pencil dots on each sheet a
distance apart representing your estimate.
Orient the paper differently in each case and do
not use a ruler for reference. (Why should you
change the position of the dots on the paper, i.e.
turn the sheet around ?)

Now check your estimates with a ruler (to the
nearest millimetre). You may obtain results like
(0.950 - .005) metre. etc. Average your results
using the rules you have been given. How good
an estimate did you make? Try asking your
parents to perform the experiment (without first
allowing them to see a ruler with the required
length marked on it). Are their final estimates as
good as yours? Suggest a reason. What in fact,
does this experiment show?

500
: ]
R = (1.004+0.01) cm relative error = 700
r = (0.80+0.01) cm relative error = g-l(—)
Volume = wl(R+r)(R—r)
= =(5.00)(1.00+ 0.80)(1.00—0.80)
= 7x5.00x1.80x0.20
= |.80=
= 5.65cm’
Absolute error in
(R+r) = (0.014+0.01)cm = 0.02 cm
Absolute Error in (R r) also — 0.02 cm
d . 0.02 1
Relative error in (R+r) = T80 = 90
: ; 0.02 1
Relative error in (R—r) = 030 = 10
L1 A48 1

Relative error in (R+r)(R—r) =

I
+

Relative error in [(R+r)(R—r)

9" 500 9
.. Relative error in volume = ;
% error in volume = %9 A

Not a particularly accurate result!

It would almost certainly be better to use displacement of water
in a measuring cylinder to find the volume—-it would be quicker
and no less accurate.

A triple arm balance could be used to find the mass and then
density could be calculated from mass/volume.

mass = m

EXPERIMENT

If you were given an object, rectangular in shape,
weighing approximately 1 kg and measuring
approximately 0.2m » 0.1 m x 0.05m, what
instruments (from the following list) would you
use to calculate the density of the material in the
object? Explain your choice. Include any other
methods if none of those below is suitable.

Possible Error Possible Error

Metre rule Beam balance

(-+0.05cm) (- 0.005g)
Micrometer Spring balance
(--0.001 cm) (+1.0g7)
Vernier Deca-gram balance
(+0.01 cm) (+0.1g)
Travelling microscope  Electronic balance
(<< =0.0001 cm) (+-0.001 g)

The possible error depends on the scale reading
limitation and errors introduced by moving
parts, etc.
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MEASUREMENT OF THE VERY SMALL—UNCERTAINTY

As physicists continue to probe the nature of matter, they eventually
come to the measurement of quantities that cannot be specified
with anything like the certainty that we can ascribe to, say, the mass
of a football, or the position of an object relative to them.

In order that the object may be seen, it must be capable of
reflecting light, or not reflecting light if the background does;
either way, it can be made to ‘stand out’ and to be seen. Light can
be considered to have either a wave nature or a particle nature.
Light ‘particles’ are called photons. Hence when we see an object,
it is because photons are transmitted from the object to our eye.
If the object emits photons towards us, then, if the law of conserva-
tion of momentum is to be obeyed, the object should recoil in the
opposite direction. Look across at the wall nearest you—it is
emitting photons of light (you can see it)—is it moving backwards ?
Obviously not (we hope).

When you looked at the wall, you were determining its position
by allowing photons from the object to enter your eye, impinge on
the retina and give up their energy. This was then converted into
an electrical impulse (possibly via a chemical reaction). The impulse
was interpreted by your brain and you ‘saw’ the wall. The act of
fixing the position of the wall meant that in emitting photons
towards you, the momentum of the wall was changed (this was
unobservable, but none-the-less it did occur).

Let us examine this a little more closely. Visible light has an
average wavelength of about 5x 1077 metre (or 5000 Angstrom
units). The momentum of a photon of such light is given by the
formula—(units used are M.K.S.A.)

h (Planck’s constant)
A (the wavelength)

(momentum) p =
h has the value 6.63 x 10™3%Js (joule second).

Hence the momentum of a photon would be—
_ 6.63x10-3¢
ST 2k
~ 1.3x10727 sN

Imagine that the wall had a mass of 200 kg (does this seem reason-

able?).

The emission of one million, million, million photons (10'#
photons) would give the wall a backward velocity of—

13 102 e

gt 3
=065x107"* ms~1

Small wonder that you are not able to see the wall move.

sN (second newton)

s"l

Fig 3.5 Metallic crystals. See if you can find out how
these crystals have been made visible ?



Now let us consider that we wished to determine the position of
a single electron (mass = 9x 107! kg). To do this we have to
“reflect” light (photons) off the electron. The photon we discussed
before has a momentum of the order of 10727 sec. Newtons, the
electron has a mass of the order of 1073 kg, hence the recoil
velocity of the electron could be quite high (estimate what it might
be).

So, on the scale of subatomic particles, we set ourselves a
problem—to look at a particle and hence determine its position,
we have to upset its momentum. To determine the momentum of
the particle, we have to upset its position. One measurement can
only be made to any accuracy at the expense of the other. This fact
was recognised by a man called Werner Heisenberg who stated it
in the following way—

Axx dp = h
This simply means that we cannot measure momentum and
position at the same instant with unlimited accuracy.

Ax is the uncertainty in the measurement of position

Ap is the uncertainty in the measurement of momentum

h is, again, Planck’s constant.

A similar relationship exists between energy and time.

dtx AE = h
As an example, say an electron has a speed of 500 ms ™' accurate to
0.01%. With what accuracy can we specify the position of such an
electron ?
mv = 9x1073 x 5% 102
=510 2 G N
The uncertainty is stated as 0.01 % of this quantity
dp = 4.5 1= jore
= 45%x10732 5N
The minimum uncertainty in position, calculated using the un-
certainty principle is hence—
Adx = hj dp
6.6x1073* Js
T 45x10732sN
=~ 1.5x 1072 metre
= l.5cm

P

It is rather hard to imagine the electron as a tiny dot if you cannot
measure its position to any greater accuracy than this. Look back
at the table to see the size of an average atomic nucleus—compare
this with the uncertainty in position (and hence really “size”) of the
electron.

The uncertainty principle is really important, then, in the physics
of the very small.

For comparison let us take a more familiar object—say a 50 kg
boy running a hundred metres in ten seconds (quite a feat, but the
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boy’s difficulty in performing it is more than offset by the ease of
calculation these figures afford us). Assume the uncertainty in the
measurement of this feat is again 0.01 %,

Momentum (p) = mv

= SOX%) = 500 sN
Uncertainty 4p = 500x 10™¢
=3x10"* 3N
it 6.6 x 10734 Js
5% 1072 sN

= 1.1 x 10732 metre
Compare this again with the size of an atomic nucleus (10712
metre).

This uncertainty in position is unmeasurably small, hence it is
of no importance in ascertaining the position of the boy.

The uncertainty principle fades with insignificance in the macro-
scopic (large scale) world, but it is an all important factor limiting
the accuracy of measurement in the subatomic world.

G. Gamow in his book Mr. Tompkins in Wonderland has
speculated what our world would be like if the value of Planck’s
constant were much larger than it is now.

The uncertainty effects experienced in our dealings with sub-
atomic particles would become important in the macroscopic
world. Imagine trying to hit a baseball, drive a car, or do any of
those familiar things we take for granted.



4: TRANSDUCERS

A transducer is a device that converts a measurable quantity into
something more conveniently measured or used.

As a simple example of a transducer consider the ordinary
mercury-in-glass thermometers. Increase in temperature is mea-
sured in terms of variations in length of a mercury column. The
temperature variation is more conveniently displayed as a length.

Most transducers convert measurable quantities into some sort
of electrical signal as this is most readily transmitted, e.g. the
sensors on a satellite orbiting the earth may be measuring such
things as micrometeorite activity, ultra-violet radiation intensity,
temperature, magnetic field strength, etc. All of these variables are
transformed into electrical signals by transducers and then trans-
mitted to earth where further transducers may convert them into a
form suitable for study.

Think of the simple act of looking at a light globe. An electrical
current is transformed into electromagnetic radiation which we
“see” as visible light. Our eyes ultimately enable an electric signal
to be sent to the brain. This is probably compared in some way with
the “memory™ of past impulses and interpreted as a “light globe™.

Is the speedometer on a car a transducer ? What about the petrol
gauge?

Transducers are used widely even in the home. You have several
of them in your own house. The T.V. set, radio, radiogram, all act
as transducers. How many other examples can you think of ? Make
a list, stating the function of each one.

In the next section we shall discuss some transducers. When you
have completed the section examine the instruments discussed to
see how many can be related to transducers, i.e. they either employ
transducers or are themselves transducers.

Fig 4.1 A transducer . , . or two?

Fig 4.2 See if you can find out what this combination
of instruments is used for. How many
transducers are there in use here?
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5: NUCLEAR POWER AND MEASUREMENT

+ maisture
i T : =oEetoay electric power
2
i 4
——
123 i
steam |22 high pressure fow pressure
or rhin turbin :
generator turbine & i
reactor condenser |- #:| cooling water
i —"out
primary 3
coolant 2
e A 1

feed water
1 heater

feed water feed water

water purification
system

pump heater

Fig 5.1 Layout of a typical atomic power plant.

A nuclear reactor in an atomic power station may perhaps be
considered to be a transducer (is it?). The fission (splitting) of the
nuclear fuel into lighter elements causes an enormous release of
energy, mainly in the form of the kinetic energy of the fission
products. The total mass of the products is less than the mass of the
original parent atom. The mass defect or difference in mass has
been converted into energy. Einstein’s mass-energy equation can
be used to calculate the total energy released per fission.
E = mc?

The layout of a nuclear power plant could look like fig 5.1.

A block diagram of the reactor (fig 5.1(b)) indicates how the
reactor functions. The control rods, when lowered, slow down the
reaction, and the water acts both as a coolant (to convey heat away
from the reactor) and as a moderator.

A moderator is a substance that slows down neutrons released in
the fission process, converting their energy into heat, and at the
same time increasing the possibility of their being captured by
atoms of the fuel and hence causing further fission.

For a reaction to be controllable and self-sustaining, one of the
product neutrons should go on to cause a further fission. If more
than one causes a further fission the chain reaction could result in
such a large release in energy in a short time that an explosion
could result.
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Fig 5.2 Schematic representation of nuclear fission.



It is in the control of the energy release of reactors that measure-
ment is important. Devices that keep a check on the number of
neutrons released in the pile continuously monitor the state of the
reaction. Thermo-couples keep a record of the temperature within
the pile. (A thermo-couple is a device that converts heat energy into
electrical energy.) Radiation counters check the state of the coolant
material. If one of the fuel containers should crack and release
radioactive material into the coolant, pollution of the plant could
result. This should never happen and when you think that all of
the safety devices mentioned above are installed in triplicate at

least, it might seem that accidents are just not possible,
This unfortunately is not so, and one example may indicate to

you just how important it is to know what you are measuring
when you work with an instrument that gives a reading on a dial
some distance from where the instrument itself is actually sited.

This particular accident occurred at Windscale Pile No. 1, a
military reactor in England. This reactor was a little different in
design from that shown in fig 5.1. The moderator in this instance
was graphite, and the coolant was air. The air was drawn through
the pile and, after being checked and filtered, expelled through
large smoke-stacks. Hence any release of radioactive substance
could possibly result in pollution of the countryside.

During normal running of the reactor, the graphite tended to
swell and store some of the heat energy from the pile. This stored
energy was released at a later time, the release being effected by
shutting down the reactor and slightly heating the graphite. This
had the effect of triggering the release of the stored heat.

At the start of one of these routine releases of heat, the monitor-
ing devices were checked to ensure that they were operating proper-
ly. Defective thermo-couples were replaced and the procedure
commenced. Initially the triggering heat applied did not seem to
have the desired effect and so a second heating of the graphite was
tried. This was done a little faster than routine called for, but
nothing seemed amiss at the time as a result of it.

Unknown to the people operating the treatment of the graphite,
during the heat application one or more of the fuel elements had
seriously overheated and the steel jackets enclosing them had
cracked and melted. The uranium fuel, exposed to the air, com-
menced to burn and during the next day the fire spread to 150
channels. The pile instruments showed nothing drastically wrong
and only a slight rise in radioactivity was noted in the expelled air
used as a coolant.

When the temperature rose to a level that caused some concern
the operator allowed more cooling air to circulate. Instead of
cooling the pile this had the effect of increasing the extent of the
fire raging in the reactor core. The instruments used to scan the
core had jammed because of the intense heat.
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When the alarm was finally raised it was decided to cool the pile
using water—a particularly dangerous procedure, but carried out
without incident. During the period the pile had been out of control
large amounts of radioactivity had been released into the surround-
ings (for two whole days). The total radioactivity released was
estimated to be about one-tenth of that of the atomic bomb dropped
on Hiroshima. It had a drastic effect on farming in the area and
probably this effect still persists to some degree. This accident
occurred in 1957—a totally safe reactor still does not exist.

The point to be learned from this was that although monitoring
devices were installed, they were not distributed throughout all
sections of the pile. The breakdown occurred in a section of the
pile that was ineffectively monitored by measuring devices. The
coolant air was inadequately checked for radioactivity. Needless to
say, the measurement section of this and other atomic piles is now
more adequately policed.

To prevent large-scale damage when dealing with nuclear
reactors, efficient, reliable measurements of pile activity are essen-
tial, but still accidents occur. Up until 1966 there had been at least
ten serious reactivity accidents in non-military establishments
alone—some resulting in death of the operators. Four reactors
had been put out of action by these accidents and never revived

successfully.
An insurance company made an estimate of possible damage

resulting from the failure of a medium size reactor located near a
large body of water about 30 miles from a major city.
“For the three types of assumed accidents, the theoretical
estimates indicated that personal damage might range from a

Fig 5.4 The Windscale gas-cooled reactor.



lower limit of none injured or killed, to an upper limit, in the
worst case, of 3 400 killed and about 43 000 injured.
Theoretical property damages ranged from a lower limit of
about one-half million dollars to an upper limit in the worst
case of about seven billion dollars. The latter figure is largely
due to assumed contamination of land with fission products.
Under adverse combinations of the conditions considered, it
was estimated that people could be killed at distances up to 15
miles and injured at distances of about 45 miles. Land con-
tamination could extend for greater distances.” (from Theoreti-
cal Possibilities and Consequences of Major Accidents in Large
Nuclear Power Plants, U.S.A.E.C. document *Wash—740").
Having been rather morbid about the consequences of radio-
activity release to our environment, we should consider the units
in which this radioactivity is measured.

UNITS OF RADIATION

Radiation is caused by the disintegration of an unstable nuclide.
Particles are emitted and a more stable nuclide is left behind.

The fundamental quantity of the radioactivity, therefore, is the
number of disintegrations per second in the radioactive material.
The unit is the curie.

1 curie (Ci) = 3.7x10'° disintegrations per second. This is
approximately equal to the rate of disintegration of one gram of
radium, which was its original definition. Most laboratory sources
are of millicurie or microcurie size.

We are often concerned with the result, rather than the source of
radiation. This is called exposure, and is defined by the ionising
effect of a given amount of X- or y-radiation on a very small mass
of air. The unit is the roentgen.

the ion charge 4dg (in coulombs) pro-
duced in a small mass of air dm by
the secondary electrons produced by
X — or y— radiation

mass of air dm

One roentgen (R) = 2.58x 1074 Ckg ™!
The exposure X at a distance / from a radioactive source can be
calculated from:

Exposure X (inroentgen) =

A (activity, in Ci) x 4t
e 5

X (exposure, in R) =

where I" is the specific emission constant of the nuclide.

From this the Radiation Absorbed Dose (RAD) can be calculated:
Absorbed dose D (in RAD) = X (exposure, in R) x F
where F is the factor related to the energy of the radiation and the

nature of the material.
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Fig 5.5 Packing radioactive isotopes for shipment.
Stringent precautions are taken against leak-
age of radioactivity.
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The radiation absorbed dose is defined in terms of the radiation

energy given to the absorbing material.

one RAD = 0.01J kg™
The energy of different types of radiation, and therefore the bio-
logical effect of them, varies. For example, neutron radiation is
ten times as destructive as X- or y-radiation. Hence a co-efficient,
Relative Biological Effectiveness (RBE) relates the effectiveness of
various types of radiation to that of standard 200 keV X-radiation.

_ Biological effectiveness of a particular radiation

BBk = Biological effectiveness of 200 keV X-radiation

Finally, the biological effect is related to the absorbed dose D and
the RBE for the radiation in question. It is measured in REM
(Roentgen Equivalent Man), which is the unit of dose of any
ionising radiation which produces the same biological effect as a
unit of absorbed dose of standard (200 keV) X-rays.

A dose of 500 REM is considered lethal. See if you can find out
more about radiation doses and the safety precautions required in
handling radioactive material.

The Mean Lethal Dose is that which causes death in 50% of
individuals within 20 days if administered to the whole population
in 24 hours (about 500-600 REM). This is one measurement that
is difficult to obtain accurately due to the lack of willing volunteers
to experiment on. We have to rely on information from accidents.

(Have you ever wondered just what a “cutie pie” is—a good
looking “bird” ? something to eat ?—No. It is a common radiation
survey meter used to determine exposure levels.)

So if they ever drop the bomb near you and you aren’t vaporised
by the heat or killed by the blast, at least you will know the units
of the radiation that will kill you just as surely, but a little more
slowly.

Fig 5.6 This man is checking a package for radio-
activity leakage. Note the dosimeter on his
breast pocket. It contains a piece of photo-
graphic film wrapped in foil. At the end of
the day it will be developed, and the extent
of the fogging shows whether he has been
exposed to abnormal radiation.
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In the direct measurement of length such devices as rules, measuring
tapes, vernier callipers, micro-metre screw gauges may be employed
depending on the length being measured.

Each instrument is designed for a specific purpose and before
using any particular instrument you should always stop to think if
it will produce an order of accuracy approximately equal to any
others involved in your calculations. There is little point in measur-
ing a length such that you can calculate a volume to an accuracy
of 0.01% if, in order to calculate density, mass is measured to 1%
accuracy.

With these instruments the length being measured is compared
directly with a standard length produced by or incorporated in the
instrument. We are not concerned here with how these instruments
work, but merely with how, when, and with what validity they
may be used.

INDIRECT MEASUREMENT OF LENGTH

If we wish to measure a very great length, e.g. the distance to a star,
obviously direct methods fail.

1. Inverse Square Method

Sometimes, with luminous objects, the intensity of the light received
from them may be compared with the intensity from a star a known
distance away. Using an inverse square law the unknown distance
can then be calculated. (Do Experiment S7/3, page 61.)

You may have heard of the word quasar. (If not, find out what
the term means.) Would the above method be applicable to
quasars ? Discuss this.

2. Parallax Method

The principle of the parallax methods can be demonstrated in
measuring the distance from an observer to a relatively near object.
A simple parallax viewer may be used to do this (see Experiment).

Fig 6.1(a)

perspex scale

pin hole sight

EXPERIMENT

It is essential that a well-defined reference. point
be used. The reference point should also be many
more miles away than the object whose distance
from you is to be measured.

Move to a position such that the reference
point, object and centre of the parallax scale are
all in line.

Mark the position where you stand and move,
say, 20 metres (the baseline) at right angles to
the line joining reference point, object and centre
of the parallax scale.

Stand at the position Q and line up the sight
hole, centre of parallax scale and reference point.
Without moving the parallax viewer note the
scale reading coinciding with the object being
measured. Record the apparent displacement of
the object from the centre of the scale, Call this x.

The dimensions of the viewer will give you the
distance v marked on the diagram.

If the reference point is much more distant
than the object then # is approximately equal to
.

tan 0, = X Your Result
¥y
[
tan 8 = QRIPR
b4 o
hence PR =~ QR
x OR
PR =

f to reference point *
|
l
! P
|
| [}
Fig 6.1(b) |
! diagram is out of
| proportion and not
| drawn to scale
|
I 2
1 7
|
|
|—-J
3 I a4 reference point,
{ object and sight-hole
baseline L”’ line
e move 20 R
metres
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The method used here is essentially the same as that used to find 93 million miles
the distance of a near star. A distant star is used as the reference  Fig 6.2 =149 x 107'm
: ; i : : =distance from earth to sun
point. Once the distance of the near star is established, an extension =7 astronomieal it
of the method can be used to find the distance of a far star. The '
baseline used is the diameter of the earth’s orbit. Photographs
taken at six-monthly intervals are compared, and the apparent
shifts of the distant stars relative to the near stars measured.
Although this method works on a base line 186 million miles long,
the distances to the stars are so great that the shift can only be
measured in seconds of arc. A parsec (parallax-second) is the
distance at which a body of diameter equal to the radius of the
earth’s orbit would subtend an angle of one second (see fig 6.2).
Can you work out a value for the parsec?

3. The Doppler Effect

It is generally accepted that nearly all objects in the Universe are one parsec
receding from each other. It is possible to estima’e the speed of
recession of luminous objects along a line joining the object to the
earth. To do this, use is made of the Doppler Effect. You have prob-
ably stood by the side of the road as a police car or ambulance sped
past with its siren going. You will have noticed that the pitch of the
note emitted by the siren changes as the vehicle passes. This change
in frequency (and hence pitch) when there is relative motion be-
tween source and observer is known as the Doppler Effect.

A similar effect exists for electromagnetic radiation such as
visible light. We shall not attempt to go into the theory of this at
this stage. Light from a distant star that is receding from us is
observed on earth to have a longer wavelength than we would
expect from a source of identical light here on earth. This is known
as the red-shift. From the change in wavelength (and hence fre-
quency) the velocity of recession of the source from the earth can
be calculated.

Many of these sources are enormous distances from us. A unit
in common usage to measure such distances is the light ;ear—the
distance that light would travel in one year at 3x [0* ms™'. The
nearest star to the sun is over 4 light years away (what is it called ?)
and our galaxy itself is about 60 000 light years across (how many
metres is this?).

4. Triangulation

Triangulation methods may frequently be used to measure dis-
tances indirectly. For example, to measure the distance OP by

gogr 111

triangulation— P
Mark the position P. i
Move (say) 20 metres at right angles to OP to 4. Mark position

A. in practice, OP
Move 40 metres (any known distance will do) in a direction at is much greater

right angles to AP, to B. Mark B. S
Move along a line BC at right angles to 4B until a point C is

found from which it can be seen that OAC is a straight line. G e—— R



Measure BC.

Using similar triangles,
OP AB ABx AP
—=—0rOP = ———
AP  BC BC

All the quantities on the right hand side of this expression have
been measured, hence the distance to the object can be calculated.

Can you suggest what are likely to be the main sources of error
in this experiment and how they could be reduced ? How accurately
would you express your answer ?

The method of triangulation has wide application. Design an
experiment to find the height of an object given a metre rule and a
large protractor,

In surveying, the process of triangulation consists of making
angular measurements alone. The results are then plotted on to
scaled paper using an arbitrary base line that has been drawn to a
known scale. The positions of the surveyed points and their
relative separation can then be shown accurately on what then
becomes a map of the area. The process we have described in detail
is used to find one length, given a base line of known length to
start with.

5. THE CATHODE RAY OSCILLOSCOPE

In this unit, we are not concerned with how or why the Cathode Ray
Oscilloscope (C.R.0.) works, but simply how it may be used for a
wide range of measurements. The basic controls are shown in
fig 6.4. In our applications of this instrument the Y-shift (volts/cm)
and the time base are perhaps the most important. The voltsfcm
control determines the displacement of the beam for a given input
signal. The time-base control determines how rapidly the spot
will move across the graduated screen.

1. The C.R.0. as a Voltmeter

Adjust the time base until the moving spot appears as a continuous
line. If a constant potential difference is applied across the ¥ input
(with the trace initially in the undisplaced position) then the trace
will be displaced. If the volts/cm control is set on, say, 2 and the
trace is displaced 3 c¢m by the input, then the applied potential
difference is 6 volt.

2. The C.R.0. as a Timing Device

Use can be made of the time-base control to measure time intervals
between events, e.g. if the spot moves across 10 cm in | second then
each centimetre is equivalent to a time interval of one tenth of a
second. An input signal may cause a small “bump” in the path of
the spot. If two input signals occur at points 5 cm apart when the
time base control indicates that the beam is traversing 10 ¢cm in
1 second then the time interval between the two input signals must
have been 0.5 second.
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Now do Experiment 57/5. page 63

TereavipwenT

Fig 6.4 Basic controls of a cathode ray oscilloscope
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(a) We can use this to time a falling object.

As the ball bearing passes between the Al-foil strips the circuit
is closed and a pulse appears on the C.R.O. tube. Hence the time
taken for the ball bearing to travel a known distance can be
calculated. If it starts from rest, then the acceleration due to
gravity can be calculated.

The same principle can be used for numerous other applications.

Photo cells could replace the Al-foil to give a more accurate
reading.

What is likely to influence the uncertainty in any measurements
taken in experiments of this nature? (Can errors arise due to the
observer, the event being studied or the measuring instruments?
Which of these is likely to be most important? How can the degree
of uncertainty in each measurement be reduced 7)

(b) Using the experimental set up indicated on figure 6.6, the
distance x could be calculated if the speed of sound were known.

The initial noise would result in a pulse on the oscilloscope trace
from the microphone, the echo would give a second weaker (why ?)
pulse. If the time base setting is known, then the time between the
sound being made and the echo being received can be found-—say
it is 7 seconds.

¢ x speed of sound

hence distance = 3

(why divided by 27)
(c) Radar works in a somewhat similar way with electro-magnetic
waves used instead of sound and with a much faster setting on the
time-base control.

3. The C.R.0. Used to Study Waveform

Attach a microphone to the input of the C.R.O. Adjust the time
base until the moving spot appears as a continuous line. Talk,
whistle, sing into the microphone and observe the trace on the
C.R.O. screen. Compare this with the trace from a tuning fork.
Play a classical record and observe the trace resulting from this.
Now piay some of the “mind-destroying clatter” (as it has been
called) of some of the poorer forms of popular music—notice any
difference ?

By correct adjustment of the time base, any wave form can be
displayed on the C.R.O.

The effect of mixing two sounds can be seen (the phenomenon
of ‘beats’—look it up in the library if you are unfamiliar with the
term—can be seen as well as heard).

4. The C.R.0O. Used to Measure Frequency

(2) This can be done by a direct comparison of a known signal
from a signal generator (or 50 Hz A.C.) with an unknown, with the
time-base suitably adjusted. (The trace is a signal-time graph.)

large (why?) ball bearing

Al-foil strips

-~

a1}

input pulse

| t

resulting
C.R.O. trace

[ battery mput to C.R.O.

Fig 6.5

C.R.O. input

microphone

heter A x reflecting

< surface
source of noise

(e.g. starting pistol}

initial
sound echo

{ i

resulting
C.R.O. trace —

Fig 6.6



First the known signal is used as the input and the wave form
noted from the grid on the screen, then the unknown.

il e
e N

EN LN
Bl o=

Fig 6.7

From this it can be seen that the unknown signal varies with time
twice as rapidly as the known signal.

ie. fy = 2,

(b) A more interesting way of doing this is to put one signal across
the ¥ input and the other across the X input (normally the time-
base operates here).

The traces that result are known as ‘Lissajous figures’. If the
signals are of the same strength when they are applied across the
X and Y inputs (it may be necessary to amplify the X signal first—
why?) and the frequencies are almost equal, a ‘rocking ellipse” will
be seen (fig 6.8(a)). If one frequency is twice the other a rotating
“figure of eight” will be seen (fig 6.8 (b)).

If one frequency is 3 times the other then the result will be as in
figure 6.8(c). (Have you seen this anywhere before?)

It is possible to obtain Lissajous figures using two pendula—
see if you can find out how.

The C.R.O. can be used to compare the intensity of a signal with
that of a known signal. This is virtually the same as using the C.R.O.
as a voltmeter.

The uses given here for the Oscilloscope are but a few of many.
It can be used to test electrical components for correct operation,
to examine phase relationships between signals, analyse signals, etc.
You might like to set yourself an assignment to discover just how
many different uses the C.R.O. can have.

METERS

Look about you and see how many different meters you can see in
a day—speedometer, galvanometer (voltmeter, ammeter), chrono-
meter, water meter, etc.

The meters can be roughly divided into two classes, Electrical
and Mechanical.
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Fig 6.8
(a) QO%
(b)
or depending on which
signal has the
higher frequency
fc)
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1. Electrical Meters

The most widely used type of electrical meter is the moving-coil
galvanometer. Most laboratory voltmeters (to measure potential
difference) and ammeters (to measure electric current) are moving-
coil meters.

These meters rely on the fact that a coil suspended in a magnetic
field will be acted upon by a torque il a current flows in it. The
angular displacement of the coil is directly related to the magnitude
of the current flowing in it.

The important thing about moving-coil galvanometers is that
they have a linear scale. Each scale division is the same length.
Hence it is easy to estimate a value if the pointer does not line up
exactly with a scale division. This is much more difficult if the
meter scale is non-linear.

The meter, like any other instrument, should be designed so that
it upsets the quantity that it is designed to measure as little as
possible.

(a) An ammeter is a galvanometer with a low resistor placed in
parallel with it (a shunt resistor). This combination produces an
instrument of low resistance that is placed in series in an electrical
circuit so that any current flowing in the circuit must also flow
through the ammeter, most of it going through the low resistance
shunt—why must this meter have low resistance ?

An ammeter can be changed into a milliammeter by changing
the shunt resistor. The mathematics of this is not difficult and any
good reference book will indicate how it can be done. (Find out
how to change an ammeter into a milliammeter.)

(b) A voltmeter is placed in parallel with a component in a circuit.
It is intended to measure the potential difference between two
points. Because it is placed in parallel in a circuit, it should draw as
little current from the circuit as possible, i.e. upset the circuit as
little as possible—hence it must have high resistance.

A voltmeter is simply a galvanometer with a large resistor in
series with it.

The range of the voltmeter can be varied by varying the value of
the series resistor. It is simply then a matter of changing the values
of the scale graduations on the instrument.

Meters such as petrol gauges, recording level meters on tape
recorders, etc., are simply moving coil galvanometers that have
been adapted for a specific use.

Other Forms of Electrical Meters

There are many other forms of these meters. The diagrams below
should be reasonably self-explanatory. Most text books (particu-
larly some of the less recent ones) describe some forms of each of
these. Try dismantling an old meter to see how it works (make sure
that the meter you dismantle is no longer of any economic value
before you try it!).

Fig 6.9

fa) ammeter

galvanometer

shunt resistor

(b) voltmeter

galvanometer

series resistor
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Fig 6.10 Electrostatic meters.

) Gold leaf electroscope. What does it
(a actually measure?

insulation
— stem
graduated
earthed — scale
case ~——1— gold leaf

Fig 6.11 Moving lron Meter.
Soft iron moves into the solenoid against
the tension in the spring suspension.
Distance moved depends on current in the
solenoid.

The diagram shows an electrical current
measuring device (A.C. or D.C.7).

2. Mechanical Meter

scale

pivot with spring suspension
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(b) Attracted Disc Electrostatic Voltmeter.

When A and C are at different potentials
B is attracted to A The spring suspension
causes the pointer to move across a scale.
Is this used for high or low P.D. measure-
ment? Is the scale likely to be linear?
metal plates
insulated from earth and
each other

pointer moving over scale

soft iron

Perhaps the most common form of such meter would be the water
meter. A watch might also be considered as a mechanical meter.

This also has a linear scale.

Pressure gauges of various kinds are also mechanical meters in
many cases. With all of these meters, what we actually measure is

a length the distance a pointer moves 4across a
do not have linear scales.

scale—some of these

We assume that the meter has previously been calibrated using
an accepted standard and too often we take the reading on the

meter at face value without considering:
(a) is the zero correct?
(b) is the calibration correct?

(c) have parallax effects, thickness of gradudt:ons and pointer
ambient conditions been allowed for? (Have you discovered

yet how parallax effects cause reading errors?)
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QUESTIONS

1. What are the readings indicated by the pointers on the meters
in figs 6.12 to 6.157

2. State the absolute error in each case.
A i 2 Fig 6.12 Fig 6.13
3. What is likely to contribute to the uncertainty of the measure-

ment indicated on each meter—

(a) that which you can estimate ?

(b) that which you cannot estimate ? (Why?)

4. The men in fig 6.16(a) are setting up the road prior to using the
instrument shown in fig 6.16(b). What is the instrument used
for?

Look at the scale. Is it linear? What difficulties is this likely to
produce?

5. If all these instruments shown in fig 6.17 were calibrated in S.1.
units, what would their units be ? The tachometer says ‘RPM x
100°. How would the S.I. units be adjusted to make the numbers
sensible ?

Fig 6.16

Fig 6.17

BALANCES

The type of balance you use to take a measurement depends
entirely on the degree of accuracy required—you may choose to use
a spring balance, beam balance, single pan balance. If the relative
error in any other measurements you have made was 1/20, say, then
it would be pointless to make a measurement of mass any more
precise than this.

Our measurement of mass usually depends on a comparison
made with a set of standard masses as discussed previously. (How
exact are these ? How is the comparison made? How accurate is the
method of comparison 7)




7: SPECIAL TECHNIQUES

Any experiment that you might like to devise is only as good as the
measuring techniques that you devise for evaluation of results and
initial conditions.

We shall discuss a few special techniques.
1. USE OF RADIOACTIVE ISOTOPES
A. Tracers
Radioactive isotopes may be used as tracers by biologists, chemists,
engineers, etc. A small amount of radioactive material can be used
as a ‘tag’ to follow movement of chemicals in the blood, water in a
plant, oil in a pipeline, sand from a beach, etc. The Australian

Atomic Energy Commission has an excellent booklet outlining isotope

sheet rofler

many of these uses. ki
T 4

B. Non-destructive Testing At
1. Radioactive isotopes may be used to continuously monitor the i
thickness of sheet material in a rolling mill. The isotope and A, signal decreases,
detector are placed on opposite sides of the sheet and the detector rollers are moved closer
signal is used to determine the spacing of the rollers (fig 7.1). tagether to decrease

thickness.

Fig 7.1 A thickness gauge.

The photo shows a gauge in operation in an
asbestos factory

Any variation in thickness changes the absorption of the radia-
tion, and this leads to a different signal from the detector and the
rollers are adjusted to eliminate this variation.

steel cylinder

2. The height of a liquid (say a liquid gas) in a steel cylinder can be _
measured by the procedure indicated in fig 7.2. When the count saiade
rate drops drastically this indicates the level of the liquid.

detector

3. The thickness of paint on a motor vehicle may be measured by
using a back scattering method.

T . : R
The amount of radiation reaching the detector depends on the liquid =1 ‘?} 5
& . . . at this
natu}'c of the scattering material and consequent a.bsorptlon in the level derecm‘:c:;"mrds
coating. Hence the thickness can be measured directly (once the weaker signal

detector has been suitably c="*5rated using a known series of thick-  Fig 7.2
nesses of the material to be tested).

Here again the monitoring can be continuous as the objects to be
tested move down an assembly line.

39
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4. Using gamma or X-ray sources, “‘pictures” may be taken of
castings, etc., to ensure that they have no flaws. Flaws show out on
the subsequent radiograph. This method is used as an alternative
to ultra-sonic techniques. To obtain a clear picture the following
precautions should be taken:

(a) The source should be as small as possible. This consequently
means that it must have a high specific activity (curie/mg). This has
two effects. It reduces self-absorption, i.e. absorption of the radia-
tion released by atoms within the source mass by outer atoms.
It also reduces the penumbra effect (fig 7.4) and enables a clearer
image to be obtained.

(b) The distance between the source and object should be as great
as possible, particularly when the object to be radiographed has
appreciable thickness (fig 7.5(a) and (b)).

This leads to a more even intensity throughout the thickness of the
object under test.

(c) The film should be as close as possible to the object (in contact
if possible). This improves the sharpness of the image obtained
(fig 7.6).

(d) The radiation should be as close as possible to normal incidence
on the object.

(e) As far as possible, the plane of maximum interest in the object
should be parallel to the film. This is often difficult to achieve and
is largely dictated by the shape of the object.

Fig 7.6
radiation

radiation

object

object
d

as o increases, scattering
effect becomes more pronounced

- film —

scattering leads to
lack of sharpniess

Fig 7.3 A bent ship’s propeller is radiographed to
check for internal fractures.

large small
source source

Ghibpl e

film

k penumbra region —

Fig 7.4
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Fig 7.5(a)
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2. LIGHT INTERFERENCE

If an ‘air wedge’ is made using two microscope slides bound to-
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interference bands

light

J

gether with rubber bands with a thin object between them at one il gtz

end, then the thickness of the thin object can be found in terms of
the wavelength of the incident light, see fig 7.7.

This is usually the yellow light of a sodium vapour lamp.

By counting the number of dark bands seen and finding their
average spacing, the thickness ¢ can be found from

I W = band spacing
d = W where { A = wave length of light
[ = length of microscope slide

This is an interference method for measuring lengths. Do not
expect the bands to be exactly parallel (why not 7). Remember that
you are measuring in terms of wavelengths of light-—something
of the order of 6x 10”7 metre.

3. NUCLEAR SCATTERING EXPERIMENTS

Read an account of Rutherford’s work on the nucleus. Imagine
that you were able to fire rubber balls (charged or uncharged) at
an invisible object or array of objects and that your only source of
information about the target was obtained from detecting what
happened to the balls after they emerged from the target region.

If you fired enough projectiles and fired them at various speeds,
then you could gradually build up a picture of the target—the
order of magnitude of its size, whether it was charged or not, how
“solid” it was, what could you knock out of it, etc.

Nuclear scattering experiments are devised in much the same
way. This is hardly a measurement made on an undisturbed
system though—in many cases the destruction of the original
target results from the bombardment.

The targets are usually nuclei and the projectiles very energetic
nucleons. Are electrons used? Discuss this.

4. MULTIFLASH METHODS

This method is discussed in detail in other sections of the course,
so only brief mention will be made of it here. It is a useful method
of investigating motion in two dimensions, and a large amount of
information can be obtained from such photographs.

What limitations does this method have? Where do errors
occur ?

5. MOVIE FILM RECORDS

Slow-motion and high-speed films can often yield useful informa-
tion that lends itself to assessment or measurement. Where do
errors occur ?

There are many experiments that can be carried out using
relatively inexpensive movie equipment. The following is a descrip-
tion of such an experiment.

| ey

Fig 7.7

rubber bands

1
Y thin object
of thickness d
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MOTION IN A PLANE

This is intended as a case study of a particular experiment, You may
like to try the same experiment or devise a similar method to suit
your situation.

In the laboratory one deals with the motion of carts and dry ice
pucks, i.e. small scale macroscopic motion. We decided to try for
a study of the motion of larger objects—people and basketballs.
This also led to a more involved investigation of the errors involved.

A grid of 8 metres square was marked out using chalk in the
school quadrangle and a large pendulum—period adjusted to 2
seconds—was set up on one side of this grid. Two basketballs
were propelled across the grid in the first experiment and the
action was photographed using an 8 mm camera situated on the
roof of the school building near the quadrangle (fig 7.8).

After processing the film was run through a strip film projector,
one frame at a time. It is a simple matter to make up a cardboard
holder for an ordinary slide projector to enable this to be done.
The camera speed had been set at 36 frames per second. Hence
every 9 frames represented a time of 0.25 seconds. This proved an
adequate time interval for the experiment. Some frames are shown
in fig 7.9(a).

The positions of the two basketballs were marked at intervals of
0.25 secs by marking in their positions every 9 frames as the film
was pulled through the slide viewer. At the same time the grid was
marked in on the screen (a piece of stiff white cardboard). Fig 7.9(b)
shows the result.

time interval 0.25 seconds

S T

Fig 7.9(b)

camera
2

school
building
pendulum
Il grid marked out
Fig 7.8
Fig 7.9(a)




QUESTIONS

1. It would appear that neither object has travelled in a straight
line. Suggest at least two possible reasons for this.

2. The camera has recorded a perspective view and the square
grid markings no longer appear square, i.e. we have a non-
linear scale. Before reading on try to suggest a method for
reading from this non-linear scale so that a graph of the move-
ment of each of the objects can be drawn on a linear scale.

3. What was the purpose of the pendulum?

The photographic record was then transformed into a record of
the event on a set of cartesian axes and shown in fig 7.10.

This was achieved by using an elastic scale. A length equal to
the smallest division on the perspective view (fig 7.9(b)) was marked
on a piece of white elastic. This was then divided into ten divisions,
and by stretching the elastic each division could be correspondingly
magnified. This enabled the positions of each object to be located
as cartesian co-ordinates for each time interval.

For reference points in further discussion the points 4, B and C
were marked in (note that the frame of reference has been trans-
posed or shifted—the base line in fig 7.9(b) is not the X-axis in
fig 7.10).

Fig 7.10 represents a position table for the two basketballs and
intervals of 0.25 secs.

A [ B
0 7 2 3 4 5 & x
—
1% 1
3 ?
P! o’
! X ®5
5 e
1
% &
. X 82
\
e ]
8 X o2
[ 13
%
o

Fig 7.70
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The following graphs were obtained for displacement from 4
and displacement from C respectively (figs 7.11 and 7.12).

Disp Distance from A
fm)
= / Fig 7.11
slope = speed relative to A
& o e 5m
© 0 D O N
© 00 0 g 9%
5m =25ms-1
4
v / 2 seconds
0 Fa
05 1.0 1.8 20 25 3.0 3.5
time (seconds)
QUESTIONS—
I. How would you describe the motion of the object marked:
@ X (b)o

Suggest a reason for your answer in each case.

2. When were the objects equal distances from the point marked
A in the position table?

3. Approximately when was the @ object closest to 4?

i Distance from C

Fig 7.12

Distance
from

C (m)

T T T
7 2 3 4

time (seconds)



QUESTIONS—

L5
2
3.

What does the point S represent?
What do the points Q and R represent?

What do the slopes of the graphs in the regions QS and QT tell
us about the motion of the objects relative to C?

. What do the slopes of the graphs in the regions RU and RV tell

us of the motion of the objects relative to C?

. Try drawing a graph of the distances of each object from the

point B for time intervals similar to those used in figs 7.11 and
7.12. Compare it with fig 7.11. Comment on your result.

The experiment was repeated using a student as the moving object
instead of a basketball. The positions of the student were marked
in on a grid as before, this time using every eighteenth movie film
frame to give a time interval of 0.5 second. The result is shown in
fig 7.13.

Time = 0.5 seconds

.\
TR

LS
e &

Reference points 4, B and C have been added to the diagram.
Repeat the procedure outlined for the previous experiment—this
will prove more difficult—see 3. below.

i
2.

Plot a position table.

Draw distance-time graphs for the student’s movement relative
to (1) 4, (2) B, (3) C.

. Comment on your results paying particular attention to the

errors involved—how did you decide on the exact position of
the student—his left root, his right foot, the point of intersection
of the line joining his two feet and a perpendicular from his
head?

Fig 7.13
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6. PHOTOGRAPHIC EMULSIONS

These can be used in high energy particle detection and analysis.
Using special emulsions, primary particles and subsequent ‘showers’
of secondary particles can be identified and their energies measured.

What do you think might limit the accuracy of any such measure-
ment ?

To help analyse the enormous amount of data, computers can
be programmed to scan photographs, e.g. fig 7.14, checking them
for unusual or sought after events. This takes some of the tedium
out of human hands and also reduces errors (how?). How do you
think it may increase the possibility of some other sort of error?

Find out how computers are used in this way as aids to measure-
ment or even as measuring devices, checking events against some
standard that is kept in the computer memory.
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Fig. 7.14 Most of the lines in this bubble chamber
photograph (except the straight ones) were produced
by a collision which took place between a negative
K-meson and a hydrogen nucleus (proton). The
annotated version shows what happened. The main
scientific interest in the photo is the track between
A and B. the first recorded example of a negatively-
charged Omega meson, whose properties had
previously been predicted theoretically. Despite the
prodigious velocities of the particles, the Omega
meson travelled only about a centimetre before
decaying. Its life could be calculated at approxi-
mately one ten billionth (10-10) second.

Note also that the paths of neutral particles (which
leave no track in the bubble chamber) have been
dotted in on the annotated version. They can be
calculated by the analysis of the tracks of their decay
products (e.g. the electron-position pairs produced
by the decay of the gamma rays at C and D) or by
application of the laws of conservation of mass and
energy (e.g. the neutral K-meson produced at A).




7. CARBON DATING

Radioactivity measurement can be used to date ancient organic
material. To illustrate this we shall briefly discuss the Carbon-14
method of dating.

Carbon-14 is an unstable isotope of normal Carbon-12. Plants
fix” atmospheric carbon dioxide while they are alive during the
process of photosynthesis. The carbon dioxide from the air is
formed into carbohydrates in the plant. Some of the carbon in
carbon dioxide is the unstable Carbon-14 formed in the atmosphere
by cosmic ray bombardment. Once the plant (or whatever has
eaten the plant and hence transferred the Carbon-14 to its body)
dies, the amount of Carbon-14 present in its structure cannot be
increased.

The unstable isotope decays at a known rate. It has a half-life
of about 5568 years, i.e. a mass of Carbon-14 decays at such a
rate that its mass is halved every 5568 years.

By comparing the amount of Carbon-14 present in a fossil with
the amount of Carbon-14 originally in the plant, we can calculate
the age of the fossil—or at least the time of death. This method
assumes that the amount of Carbon-14 present in the atmosphere
has remained constant. This is not strictly so. Why?

It is important not to oversimplify the method. In any radiation
count, the background count due to cosmic radiation, etc., must be
allowed for, and as the amount of Carbon-14 present is minute,
great carc must be taken in the count of its activity.

Other naturally occurring isotopes or radioactive nuclides are
also used. Each has its advantages and each is used for different
types of fossils. The table, fig 7.15, gives some examples.
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METHOD MATERIAL TIME DATED USEFUL TIME SPAN
(YEARS)
Carbon-14 Wood, peat, charcoal When plant died 1000-50 000
Bone, shell Slightly before animal died 2000-35 000
Potassium-argon Mica, some whole rocks ~When rock last cooled to about 300°C 100 000 and up
Hornblende Sanidine When rock last cooled to about 500°C 10 000 000 and up
Rubidium-strontium Mica When rock last cooled to about 300°C 5 000 000 and up
Potash feldspar When rock last cooled to about 500°C 50 000 000 and up
Whole rock Time of separation of the rock as
a closed unit 100 000 000 and up
Uranium-lead Zircon When crystals formed 200 000 000 and up
Uranium-238 fission Many When rock last cooled 100—1000 000 000

(Depending on
material)
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Fig 7.16 These human bones were discovered at

Keilor, in Victoria, in 1965. The specimen
was originally called ‘Green Gulley Man’,
though it now seems that they are the bones
of two people, a man and a woman.

Carbon- 14 tests on the charcoal round the
bones gave a date of (8155%£130) years
B.P, while the bones themselves were
dated (6460%190) years B.P. (The B.P.
stands for before present present’ being
taken as 1950 A.D. Hence all ages refer to
the number of years before 1950.)

The discrepancy between the two datings
could be explained by assuming that the
bones were buried in older material, or that
the bone carbon has suffered greater con-
tamination from newer carbon seeping
through the soil than the carbon in the
charcoal.

Carbon exists in bone in two forms—in the
collogen and as calcium carbonate. In this
sample, the collogen, which is less likely to
be contaminated, provided the age of 6460
years, whereas the carbonate gave a figure
of (1781+115) years—a pretty clear indi-
cation of substantial contamination.

An important point to bear in mind is that,
although these dates are comparable with
one another, the exact half-life of carbon
has not been agreed upon. It is taken as
(5568+30) years, and this figure is used by
all laboratories to ensure consistency. How-
ever, it may well be 3% higher than this, in
which case the quoted figures of age will
have to be increased. Note, however, that
the order of antiguity will be unchanged.

Photo (b) shows the preparation of the
sample. It is placed in the cylindrical
furnace (bottom left) where it is burned in
pure oxygen. The carbon dioxide produced
is then purified and passed through a
vacuum system to the counting chamber
(photo (c)). It is moved round the system
by placing a thermos flask of liguid nitrogen
around one of the collection bulbs in the
system. Three of these flasks are visible in
the photo, one just behind the operator.

Photo (c) shows the counting chamber
itself. The sample is introduced wia the
glass tube into a counter hidden in the
middle. The heavy iron door is then shut
fwhat is the purpose of the cylinders in the
bottom of the photo?).

The shielding keeps out almost all back-
ground radiation, but high-energy cosmic
mesons can penetrate it. This is the reason
for the ring of geiger tubes round the
counter. Any simultaneous count from the
central counter and one of the outside ones
must be due to background radiation. These
are known as ‘coincident counts’, and are
deducted from the total count to give the
actual count due to the sample.



APPENDIX 1: THE S.I. UNITS

One has only to look at a number of older physics text books to
realise that some standard system of units is needed in the world.
The names of many units in use today are not systematic and in
many cases the same physical quantity is described in terms of
many different, inadequately-designed units. This necessitates
conversion of units and makes reading of texts using different
systems of units a difficult task.

To ease communication a set of internationally recognised units
with one unit for each quantity regarded as a separate physical
quantity has been devised. It is called the International System of
Units (S.1. for short).

The basic S.I. units are given in the following table. This is not
yet complete. The basic physical quantity for amount of substance
is proposed to be called the mole and to have the symbol ‘mol’.
This has not yet been adopted.

All physical quantities should now be expressed in terms of
these units, Units that are not S.I. units or coherent with S.I. units
should be used as little as possible. It is hoped that progressive
discouragement of non S.I. units will lead to them being eventually
abandoned.

The symbols should be used exactly as indicated. Note that the
unit of thermodynamic temperature, K, does not have a degree
sign as in °C. For example, the triple point of water (0°C) is 273.16K.

Some of the derived S.I. units are given in the following table
with their approved S.1. names and definitions expressed in terms
of the basic S.I. units.

NAME OF S.1.
PHYSICAL QUANTITY DEFINITION
S.I. UNIT SYMBOL

Frequency hertz Hz s-1
Energy Jjoule J kgm2s-2
Force newton N kgms2=Jm™!
Power watt w kgm2sg-3 = Js~1
Electric charge coulomb C As
Electric

potential difference  volt v kgm2s IA-1 =JA-1s5-1
Electric Resistance ohm 0 kgm2s—3IA-2 =VA-l
Electric Capacitance  farad F A2stkg-1lm 2=AsV-l
Magnetic flux weber Wb kgem2s-2A-1=Vs
Inductance henry H kgm2s-2A-2=VA-lsg
Magnetic flux density tesla X kgs 2A-1=Vsm~2
Luminous flux lumen Im cd sr
Hlumination lux Ix cdsrm—2=Imm~-2

BASIC PHYSICAL

NAME OF BASIC

QUANTITY S.1. UNIT SYMBOL
Length metre m
Mass kilogram kg
Time second s
Electric current ampere A
Thermodynamic

temperature kelvin K
Luminous intensity candela cd
Plane angle radian rad
Solid angle steradian sr

PREFIXES FOR METRIC (S.1.) UNITS

MULTIPLYING PREFIX SYMBOL
FACTOR

1012 tera ¥
109 giga G
106 mega M
103 kilo k
102 hecto h
101 deka da
10-1 deci d
10-2 centi c
103 milli m
10-6 micro n
10-9 nano n
10-12 pico p
10-15 femto f
10-18 atto a
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1 horsepower hour = 2.685 x 106 joule
1 British Thermal Unit = 1055 joule
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APPENDIX 2: PHYSICAL CONSTANTS AND CONVERSION FACTORS
LENGTH
cm metre kilometre inch foot mile
1 centimetre 1 10-2 105 0.3937 3.281x10-2 6.214x10-6
1 metre 102 1 10-3 39.37 3.281 6.214 x 104
1 kilometre 105 103 1 3.937 x 104 3281 0.6214
1 inch 2.540 2.54x10-2 2.54x10-5 1 8.333 1.578 x10-5
1 foot 30.48 0.3048 3.048x10-4 12 1 1.894x10-4
1 mile 1.609 x 105 1609 1.609 6.336 x 104 5280 1
1 Angstrom unit = 10~10 metre
1 micron = 106 metre
1 nautical mile = 1852 metre
1 light year = 9.4600 < 1015 m
1 parsec = 3.084 x 1016 m
MASS
g kg slug AM.U.
I gram 1 10-3 6.852x10-5 6.024 x 1023
1 kilogram 103 1 6.852x10-2  6.024 x 1026
1 slug 1.459 % 104 14.59 1 8.789 x 1027
1 atomic Mass Unit 1.660x 1024 1.660:x10-27 1.137x10-28 1
A pound is not a mass unit although it
is often used as such. However, a kilo-
gram is a mass such that it “‘weighs”
2.2051bs at the surface of the earth
(approximately). This can be used as a
conversion factor for terrestrial measure-
ments.
ENERGY
erg joule calorie electron volt
1erg 1 10-7 2.389x 108 6.242 x 1011
1 joule 107 1 0.2389 6.242 x 1018
1 calorie 4.186 < 107 4.186 1 2.613x 1019
1 electron volt 1.602x10-12 1.602x10-19 3.827x10-20 1
1 foot pound = 1.356 joule
1 kilowatt hour = 3.6 x 106 joule



NAME
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VALUE

speed of light

elementary charge

Avogadro constant

electron rest mass

proton rest mass

neutron rest mass

Planck constant

gravitational constant
standard acceleration of free fall
normal atmospheric pressure
equatorial radius of earth
polar radius of earth

mass of earth

solar constant

Earth—sun distance (mean)
Earth—moon distance (mean)
diameter of sun

mass of sun

3.000 x 108 metre second ~1
1.602 x 10 -19 coulomb
6.023 x 1023 mole —1

9.109 x 10 31 kilogram
1.673 x 10 -27 kilogram
1.675 x 10 ~27 kilogram
6.626 x 10 -34 joule second
6.670 x 1011 newton metre2 kilogram -2
9.807 metre second —2
1.013 3 105 newton metre ~2
6.378 x 106 metre

6.357 x 106 metre

5.983 x 1024 kilogram
1.340 x 103 watt metre —2
1.49 x 1011 metre

3.84 x 108 metre

1.39 x 109 metre

1.99 x 1030 kilogram




APPENDIX 3: PROGRAMMED EXERCISE—ERRORS

This section is intended to help you understand how to use your
knowledge of errors in numerical calculations. It should also
indicate to you how to set out such answers step by step in a clear,
logical way.

Cover up the right hand column with a piece of cardboard and
gradually slide it down the page as you progress through the steps
on the left hand side of the page.

1. The length of a rectangular bar is given as (10.05+.05) metre.
The cross sectional area is given in M.K.S. units as (0.000 40+
000002) . ...

2. The absolute error in the length is . . . . metre.

3. If we divide the absolute error in the length by the measured
value of the length we obtain the . . . . error.

4. The numerical value of this error can be found from 0.05/10.05,
or, to state it in a better way . . . .
We usually round off such errors to the nearest 10, 50 or 100
as the case may be.

5. The relative error in the area is given by . . . .
and when simplified this becomes . . . .

6. Therefore we can say that these two errors have the same . . . .
3} B
It is desirable that quantities should have relative errors of
approximately the same order of magnitude when they are to
be used in calculations.

7. The volume of the bar can be found by multiplying the
measured value of cross sectional area by the measured value
of the length, i.e. the volume = 10.05x0.0004 . . ..

This can be simplified to a value of 0.004 02 m? or
4.02% 1073 m3.

8. To find the possible error in this value we must . . . the . . ...
errors in the length and cross-sectional area.

9. Hence the relative error in the volume is . .. ...

10. To change this into an absolute error, it must be multiplied
B e

11. Hence the absolute error in the volume is
4.(}2><10“‘xi =4I, .
100

12. The volume may now be stated as (0.004 02+ .000 04) m3.
52
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. 0.05
. relative

. 1/200

.. 0.000 002/0.0004
. 1/200

. . order
. magnitude

.add . ... relative

1 1 1

"200 200 ~ 100

. the volume (4.02 % 10™*) m?
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13. Now that you have been through a problem of this type once
try the following problem which has been set out in a more
condensed manner. If the length of a sheet of paper is (5.05+
0.05) cm and the width is (2.00+.02) cm find the area.

Absolute error in length = 0.05.... e A en
Relative error in length — R e e
Absolute error in width Sececsty ....0.02cm
Relative error in width i e s 11100
Area = length x width = . 10.1 cm?
Relative error in area — -5 AWl /0]

Absolute error in area
= Relative erTor % area =.... POV { M L

Hence area may be stated as . . . . ... (10.140.2) cm?



APPENDIX 4: ERRORS IN COMPUTING

Some of the errors that can be made when working with computers
are obvious. Errors in programming logic and incorrect data
supplied to the computer will both lead to incorrect results, but
there are other sources of error. The following is reproduced from
Fortran IV Programming and Computing, by J. T. Golden.

“Consider the set of equations
1.00x+1.00y = 1
1.00x+1.01y = 2
The solution is x = —99 and y = 100.

A 2% error in one of the original coefficients due to measure-

ment errors, say, changes the equations to
1.00x+1.00y = 1
1.00x+0.99y = 2

The solution is now x = 101 and y = —100".

From this it can be seen that a relatively small change of 29 in
only one of the measured values has resulted in a change of about
200 in the result for one of the calculated values. This is clearly
undesirable whether the equations are solved by computer or
manually.

“Even if the coefficients are exact, round off errors alone can
cause wide variances in the solution. Suppose the correct equations
are

1.00x+ 1.000 000 00y = 0
1.00x+0.999 999 99y = 1
The solution is x = 10% and y = —108,
If round-off changes the original equations to
1.00x-1.000 000 00y = 0
1.00x+1.000 000 01y =1
the solution now becomes
x = —10%and y = 108,
Equations such as these whose solution is very sensitive to
changes in the values of coefficients are termed ill-conditioned™.

The example taken was a rather simple one, but with a larger
set of equations involving more unknowns the results could
fluctuate even more. One of the uses of computers is to solve large
systems of equations in large numbers of unknowns. (How would
you like a set of 100 equations with 100 unknowns to solve, even
if you were sure the co-efficients were satisfactory ?) The data from
these calculations may then be used as input data for further
calculation again involving errors.

The previous example illustrates how wide fluctuation may
result from manipulation of measured quantities.

Rounding errors will always occur. For example a subset of the
Fortran language used with the IBM 1620 computer only accepts
and prints data to eight significant figures. All values must then be
rounded to this degree of accuracy using this particular computer
language.
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Using the same computer one may write the instruction to
calculate X squared in the following two ways:—

(a) XSQ = X*¥2

(b) XSO = X*X
If the value of X read in was 2.000 000 0—

Method (b) would probably result in the answer for X squared
being 4.000 000 0.

Method (a) involved different internal processes in the computer
during which rounding will occur and the answer could be
3.999 999 9,

If this value were then used in a later part of the programme,
more rounding errors could occur, and although the answer might
be printed with 8 figures, they could hardly all be relied upon
sufficiently to call them “significant”,

Taking another result, if you were asked to supply the answer to
the problem 3x} = ? You would answer immediately ‘“one”
(I hope!)

A computer must approximate the value of one over three (or
one third), because it has no way of storing fractions as such. If
the computer uses binary arithmetic (a number system with a base
of 2 instead of 10 as our normal system has), then it has neither
terminating decimal fraction representation nor terminating
binary representation.

In an 8 digit machine 4 is represented as

0.333 333 33.
Three times this is 0.999 999 99,

Hence the computer would not achieve a match between 3 x }
and 1.

We have taken simple examples; the problem becomes much
greater when calculations may be performed that involve thousands
of manipulations on a set of data. Where greater precision is
required you may see the term double precision used in the
programme. The meaning is obvious, the arithmetic processes
in the computer is a little more arduous and time-consuming, and
remember that computer time means money—a lot of it. Computer
time can be expensive if a lot of it is required on a modern machine.
Hence programmes should be efficient and a balance between
required accuracy and cost must be struck.
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APPENDIX 5: QUESTIONS—GENERAL
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1. (a) What is your height in metres? Angstrom

units? Light years? Rods? Parsecs?
(b) What is your mass in kilograms? Atomic
mass units? Slugs?

. The relationship between energy (E), mass (m)

and the speed of light (¢) is: E = mc2

Given that ¢ = 3 x 108 m s —1, express your mass
in joules. How many electron volts in this? How
many calories?

“If used completely, the mass of an average
student could be converted into sufficient
energy to supply the state of South Australia for
about 100 years”. Examine this statement
critically—do you think it is true?

. Man, as we know him, has existed on this earth

for about one million years. Say the Universe
has existed for 1010 years so far. If the age of
the Universe is taken as a day, for how many
seconds has man existed?

. If an atom were the size of an average man—

say two metre—how big would a man then be?

. What conditions should a good clock satisfy?

. “Some of the everyday ‘simple’ things we take

for granted day after day are really most difficult
to even begin to understand”. Discuss this
statement.

. Two measurements are made with the same

school ruler. One is stated as 3.0 cm, the other

as 2.0 cm. Look at your school ruler.

(a) What is the likely absolute error in each
value?

(b) What is the relative error in each?

(c) If these two values are to be multiplied to
give an area, what is the uncertainty in the
area?

. The speed of an object is stated as (50.0:£2.5)

ms—1, The distance involved in this estimation
was (100.0--1.0) metre. What is the absolute
error in the time measurement ? Suggest a likely
time measuring instrument.

. Use the uncertainty principle to find the un-

certainty in position for the following cases:—

(a) A bullet travelling at 1500 f7. sec~! with an
uncertainty of 0.1% in this value (careful of
units!).

(b) A proton travelling at 106 ms-1 with an
uncertainty of 0.01 % in speed.

10.

11.

12:

13:

In an experiment using an accelerator to
accelerate electrons, the energy of the electrons
was calculated as 100 MeV. How many joules is
this ?

Take the mass of an electron as 9% 10731 kg
and use the formula—

1
Kinetic energy = 3 my2

to calculate the velocity of these electrons.

Does your result seem strange? If so, do not
simply say “It’s wrong!™ and go back to sleep.
Think about it—suggest a refinement in the
above procedure that will remove the “strange-
ness” (if in fact you find it so).

In Geneva the CERN organisation has built a
huge sub-atomic particle accelerator 840 feet in
diameter. This is to be used to boost electrons
almost to the speed of light. How long would it
take such an electron to make a circuit around
this subatomic racetrack? (Can you really
comprehend the magnitudes of the quantities
you are dealing with?)

Which of the following quantities has (a) the
largest absolute error, (b) the smallest relative
error?

(a) (5.05+0.05) cm

(b) (10.000+0.0001) metre

(c) (0.05--.005) kilometre

(d) (50.0-+2.0) millimetre

A block of material is measured and its dimen-
sions are found to be:

! 10.00-+£0.05 cm

b = 5.00£0.05cm

w = 4.004+0.05 cm
The mass is found to be 10.05-+0.1 kg. Comment
on the relative accuracies of each measurement.
(You should calculate the relative errors in each
quantity first.)
Which measuring instruments could have been
used to make the measurements?
Calculate:
(a) the area Ixb
(b) the volume I xbxw
(c) the density
Give the relative error and the absolute error for
each quantity calculated.



14.

Two lengths are measured and one is found to
be 20.0--0.1 metre, the other 18.040.1 metre.
Calculate the sum and difference of the two
quantities, taking account of the degree of un-
certainty involved. Comment on a comparison
of the relative errors in the two results.

This has an important consequence in com-
puter programming—find out what it is.

. The following readings of a particular length

were taken by a class, all readings in metres and
summarised as follows:—

Length 4.7 4.8 49 50 .51 '52°538

Number of
timeslength 1 5 16 25 13 4 2
was obtained

Plot a graph of frequency of occurrence of
measured length against length.

(a) If these measurements were all made using
the same object, what do you think the most
likely value of the length was?

(b) How could you modify an experiment such
as this to obtain a more reliable value of
length (without changing the object or the
type of measuring instrument)?

. Have a careful look at your watch or a clock of

any kind. How accurately do you think you could
state a time from your watch? i.e. state the time
in the form (A4 -+a) units.
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17. The voltsjcm setting on a double-beam C.R.O.

indicates 5 volts/cm and the time-base is set such
that the time for a complete traverse of the
graduated screen is one hundredth of a second
for each beam. Examine the two traces below
carefully. Scale is full size (1cm = 1cm) and
the signals shown are periodic. Write down
everything you can about these waveforms
(amplitude, strength of signal, wavelength (?),
frequency, shape, possible source, etc.).
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EXPERIMENT S$7/1—ESTIMATION

This experiment involves the ability of an observer to look at ™\
two scale divisions and to estimate the value of some inter- ﬁof 1 x col 50

mediate point. Computer cards are most useful in this experi-
ment although anything similar will do.

If a set of such cards have a punching made in column 1 and
another in column 50, with a third made somewhere in between,
such that in a set of cards the third punching went from 2 to 49, l . l
the cards could then be shuffled to put them in random order.

The cards could be lettered from A, B, C, etc. The observer \_ J
would only be allowed to look at the back of the cards and would

be told that the punching in the left hand side represented zero, Comment on the class result.

that in the right hand side represented one. His problem is to
estimate the value represented by the punching in the inter-
mediate space and to record this estimation. A few seconds
only should be allowed for each estimation. If the entire class
performs the experiment the spread of results can be examined.

The actual value for each intermediate punching can be
calculated by looking at the front of the card.

Plot the class results in the manner shown here.

.

.

.

No. of times
estimate was
made

Values estimated

Can you suggest any other method of plotting? What does this
experiment tell you about your ability to interpolate when

reading a scale?




EXPERIMENT S7/2—A WIG-WAG BALANCE

Equipment

box of standard masses (you may prefer to call them a box of
“weights')

lump of plasticene

wig-wag balance (see fig 1)

beam balance

box to hold
IMasses

‘wig-wag'
motion

Take the mass of plasticene and place it in the left hand pan What can you conclude from these experiments?
of the beam balance. Now add standard masses to the right
hand pan until a balance is achieved. Record the values of the
standard masses used. (Did you remember to see if the balance
was in fact in equilibrium before you commenced the experi-
ment?) Say this was x kg.

Now clamp the wig-wag balance firmly to the bench so that
it can oscillate in a horizontal plane. Fix the plasticene in the
box of the balance, pull it to one side, release it and count the
number of complete oscillations made in one minute.

Remove the plasticene and place x kg of the standard masses
in the box. Pull the box to one side to the same degree as before,
release it and count the number of complete oscillations made
in one minute.

How do these two mass comparison measurements differ
in their method ?

e

Which would be the most suitable form of mass comparison
in an orbiting satellite? Why ?
-

E




EXPERIMENT S$7/3: A RELATIVITY COMPUTATION

(This experiment can only be done if you have access to the
use of a computer).
It can be shown using the theory of relativity that the length of
a second as measured by an observer depends on the relative
velocity of the observer with respect to the clock used for the
measurement. Before carrying on with the experiment you
should consult a reference book for more information on this
effect.

The relation of time for clock in motion (#m), time for stationary
clock (), velocity of moving clock (v) and the speed of light (c)
isi—

ts
m = ’\/4“
1—v?/c?

In the FORTRAN programme which follows C represents
the speed of light, TIMS represents the length of a time interval
for a clock stationary with respect to an observer, TIMM
represents the time interval when the clock is moving with
velocity VELO with respect to the observer.

The programme indicates how time “slows” as velocity
increases. You may be able to write a more efficient programme
than this (I hope you can!). The number of the line on the left
hand side is not included in the programme—it is there to aid
in the description of the programme. Also, in an actual pro-
gramme format statements should continue in the one line.

The information required is read in in lines 4 and 11. The
format statements indicate how the information is to be read in.
In the above programme you will have to supply all of the values
of VELO (10 are required). If statement 2 were placed before
statement 10, then only an initial value of velocity need be read
in as data. Succeeding values could be generated by the state-
ment

VELO = VELO+-1.0E+47
after statement 19. This would increment VELO by 1.0E+7
at a rate of 1.0 106 units each time. Choice of the increment
will depend on the initial value of VELO you choose.

What would be the effect of the following statement in place
of the one above?

VELO = VELO+(C—VELQ)/2.
Would statement 22 ever be printed out in this case?

Lines 13 to 17 represent the coding of the formula in
FORTRAN (this could be done more concisely) and the testing
of the values to ensure that our clock has not exceeded the
speed of light. Lines 18 to 23 tell the computer to print out the
information that has been calculated.

As a first run through the programme prepare a set of eleven
data cards. The first should have the values of C and TIMS on
it: the second say a value equal to 0.1C; the third 0.2C; the
fourth 0.3C and so on.

Think about the real accuracy of the results printed out by
the computer. Draw a graph of length of time interval vs speed.
What conclusions can you draw from your results?
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EXPERIMENT S7/4—MILLIAMMETER LIGHT METER CONVERSION

Most electrical meters employ a galvanometer somewhere in
their construction. It is our aim in this experiment to use a
galvanometer to measure or compare light intensities, i.e. to
turn it into a light meter. To do this the following equipment will
be required: 10 torch globes, 2 dry cell batteries, milliammeter,
cadmium sulphide cell, several lengths of wire and blackened
sheet of cartridge paper.

cadmium
sulphide
cell bank of

} I globes
@ d -g 3 cell

Wire up the globes so that they may be disconnected from the
dry cell one by one.

With the blackened paper in place, folded into a semi-
cylindrical shape to cover the apparatus, select a convenient
distance (e.g. 10 cm, 20 cm) from the cadmium sulphide cell
such that the meter gives near full scale deflection with all ten
globes on. The arrangement of apparatus is as shown above.
It may be necessary to include a resistor in the CdS circuit to
limit the current flowing to a safe value for the meter.

Use a felt-tip pen to mark the position of the pointer on the
meter. This will represent a light intensity of 10 torclobes (a
new ‘unit’ of light intensity) at a distance of d units. Switch off
one of the globes and mark the new position of the pointer on
the meter. Repeat until all globes are off. Does the pointer read
zero on the milliammeter scale? Why ?

You have now calibrated a milliammeter to read light intensities
in torclobes. What would you have to do to change this into a
more conventional unit?

(What in fact is the accepted unit of light intensity?) Can you
think of any modifications that would make this into a more
convenient and useful meter?
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Having calibrated the light meter, let us now use it.

Record the readings on the meter with five torch
globes on at distances of 4 cm, 6 cm, 8 cm, etc., from
the cadmium sulphide cell. Plot this graph:

light
intensity
(torclobes)

distance (cm)

What type of curve do you obtain

Now plot this graph;

light
intensity
(torclobes)

Can you deduce the relationship between light
intensity and distance from the source? How many
other quantities obey this type of law?




EXPERIMENT S7/5—MEASUREMENT OF SMALL DISTANCES—

INDIRECT METHODS

For this experiment you will need a microscope slide coated
will colloidal graphite to make it opaque, a razor blade, trans-
parent scale (e.g. a plastic set square), a school ruler and the
use of a slide projector.

Using the razor blade, scratch two parallel lines across the
surface of the graphite coated slide, as close together as possible.

The aim of the experiment is now to measure the width of
each scratch and the separation of the two scratches as accu-
rately as possible. There are many ways of doing this, but the
following method is perhaps the simplest.

Place the slide in the projector and project a clear image of
the scratches on a distant wall. Place a sheet of paper in the
position of the image and rule in the image of the scratches on
the slide. Now place the transparent scale in the projector and
repeat the procedure. Use your school ruler to measure the
magnification of the transparent scale—hence the width and
separation of the scratches can be calculated knowing this
magnification factor.

Repeat for various positions of the projector and of the slide
in the projector.

Comment on the accuracy of your results.

1. Can the accuracy of your results be improved indefinitely
by enlarging the size of the image? (e.g. by moving the
projector further away from the screen or wall). Explain.

2. Suggest another method to measure scratch width and
separation.

3. What is the most difficult part about measuring the width of
the scratch mark. (Can you in fact actually determine the
boundaries clearly enough?) Estimate the percentage error
in your results.

4. Using two razor blades bolted together, you could calculate
the width of a razor blade using this method. How could
this be done?

scale marking

/.

= %: =
- K T 'r graphite coating
e ————

e

RESULTS—
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EXPERIMENT S7/6—A HOT WIRE AMMETER

If a resistance wire is strung between two insulated supports
and a current is passed through it, the temperature of the wire
increases and the wire sags. The degree of sag can be used to
estimate the current flowing once calibration has been done
using known currents. Set up the apparatus as shown above.
Record the position of the wire with no current flowing. Allow
a current of 0.5 ampere to flow, record the new position, repeat
for 1 ampere, 1.5 ampere, etc. up to 5 ampere, say.

i i s

Current
Reading

Now reduce the current, retracing the values used before to
check that the wire returns to its previous zero value. (If it has
been stretched too tightly initially it will not return to zero—
why?)

Provided that the apparatus is left in this condition it may now
be used to measure electric current in ampere. What is a “linear
scale?” Does this instrument have such a scale?

What are the limitations and possible sources of error of this
instrument ?

Do you know of any similar applications of the heating effect
of electric current to measure the magnitude of the current (or
vice-versa) ?

Support ~ insulation ¢yt groove
/ in bolt

i

3

AA]
S
MWW,

bolt

Wil

i

I\\\\

metre
rule

Variable J
N—— current m the bolt keeps

the wire taut
source ammeter
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